5 resultados para flood risk assessment

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small and medium-sized companies and other enterprises (SMEs) around the world are exposed to flood risk and many of the 4.5 million in the UK are at risk. As SMEs represent almost half of total business turnover in the UK, their protection is a vital part of the drive for greater climate change resilience. However, few have measures in place to ensure the continuity of their activities during a flood and its aftermath. The SESAME project aims to develop tools that encourage businesses to discover ways of becoming more resilient to floods and to appreciate how much better off they will be once they have adapted to the ongoing risk. By taking some of the mystery out of flooding and flood risk, it aims to make it susceptible to the same business acumen that enables the UK’s SMEs to deal with the many other challenges they face. In this paper we will report on the different aspects of the research in the project Understanding behaviour Changing behaviour Modelling impacts Economic impacts Through the above the project will advise government, local authorities and other public bodies on how to improve their responses to floods and will enable them to recommend ways to improve the guidelines provided to SMEs in flood risk areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.