6 resultados para extreme rainfall

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.