2 resultados para conceptual contraposition
em CUNY Academic Works
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Resumo:
A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.