3 resultados para combined stage sintering model

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical stream bed erosion has been studied routinely and its modeling is getting widespread acceptance. The same cannot be said with lateral stream bank erosion since its measurement or numerical modeling is very challenging. Bank erosion, however, can be important to channel morphology. It may contribute significantly to the overall sediment budget of a stream, is a leading cause of channel migration, and is the cause of major channel maintenance. However, combined vertical and lateral channel evolution is seldom addressed. In this study, a new geofluival numerical model is developed to simulate combined vertical and lateral channel evolution. Vertical erosion is predicted with a 2D depth-averaged model SRH-2D, while lateral erosion is simulated with a linear retreat bank erosion model developed in this study. SRH-2D and the bank erosion model are coupled together both spatially and temporally through a common mesh and the same time advancement. The new geofluvial model is first tested and verified using laboratory meander channels; good agreement are obtained between predicted bank retreat and measured data. The model is then applied to a 16-kilometer reach of Chosui River, Taiwan. Vertical and lateral channel evolution during a three-year period (2004 to 2007) is simulated and results are compared with the field data. It is shown that the geofluvial model correctly captures all major erosion and deposition patterns. The new model is shown to be useful for identifying potential erosion sites and providing information for river maintenance planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.