3 resultados para bigdata, data stream processing, dsp, apache storm, cyber security

em CUNY Academic Works


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A student from the Data Processing program at the New York Trade School is shown working. Black and white photograph with some edge damage due to writing in black along the top.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Felice Gigante a graduate from the New York Trade School Electronics program works on a machine in his job as Data Processing Customer Engineer for the International Business Machines Corp. Original caption reads, "Felice Gigante - Electronices, International Business Machines Corp." Black and white photograph with caption glued to reverse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing distributed hydrologic models are complex and computationally demanding for using as a rapid-forecasting policy-decision tool, or even as a class-room educational tool. In addition, platform dependence, specific input/output data structures and non-dynamic data-interaction with pluggable software components inside the existing proprietary frameworks make these models restrictive only to the specialized user groups. RWater is a web-based hydrologic analysis and modeling framework that utilizes the commonly used R software within the HUBzero cyber infrastructure of Purdue University. RWater is designed as an integrated framework for distributed hydrologic simulation, along with subsequent parameter optimization and visualization schemes. RWater provides platform independent web-based interface, flexible data integration capacity, grid-based simulations, and user-extensibility. RWater uses RStudio to simulate hydrologic processes on raster based data obtained through conventional GIS pre-processing. The program integrates Shuffled Complex Evolution (SCE) algorithm for parameter optimization. Moreover, RWater enables users to produce different descriptive statistics and visualization of the outputs at different temporal resolutions. The applicability of RWater will be demonstrated by application on two watersheds in Indiana for multiple rainfall events.