2 resultados para Water quality management -- Queensland -- Moreton Bay
em CUNY Academic Works
Resumo:
Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.