2 resultados para Vital statistics.

em CUNY Academic Works


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This presentation will outline an effective model for a Hybrid Statistics course. The course continues to be very successful, incorporating on-line instruction, testing, blogs, and above all, a data analysis project driven trajectory motivating students to engage more aggressively in the class and rise up to the challenge of writing an original research paper. Obstacles, benefits and successes of this endeavor will be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.