1 resultado para Van Schaack, Peter, 1747-1832.
em CUNY Academic Works
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Aquatic Commons (9)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (6)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (1)
- Brock University, Canada (39)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (101)
- Center for Jewish History Digital Collections (24)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (17)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (7)
- Dokumentenserver der Akademie der Wissenschaften zu Göttingen (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (4)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (112)
- Greenwich Academic Literature Archive - UK (6)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Politécnico do Porto, Portugal (4)
- Ministerio de Cultura, Spain (57)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (193)
- Queensland University of Technology - ePrints Archive (103)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (15)
- South Carolina State Documents Depository (18)
- Universidad Autónoma de Nuevo León, Mexico (6)
- Universidad del Rosario, Colombia (32)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (15)
- University of Michigan (63)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (8)
Resumo:
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.