1 resultado para Two variable oregonator model
em CUNY Academic Works
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (138)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (59)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (3)
- Collection Of Biostatistics Research Archive (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (41)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (17)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (13)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (24)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (1)
- Earth Simulator Research Results Repository (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (3)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (19)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (30)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (77)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (18)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (6)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (32)
- Universidade Complutense de Madrid (6)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (28)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (154)
- University of Washington (5)
- WestminsterResearch - UK (1)
Resumo:
In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ε model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ε model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. 3DVAR allows also to identify and quantify shortcomings of the numerical model. Such comprehensive analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows.