6 resultados para Sustainable urban drainage

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a result of urbanization, stormwater runoff flow rates and volumes are significantly increased due to increasing impervious land cover and the decreased availability of depression storage. Storage tanks are the basic devices to efficiently control the flow rate in drainage systems during wet weather. Presented in the paper conception of vacuum-driven detention tanks allows to increase the storage capacity by usage of space above the free surface water elevation at the inlet channel. Partial vacuum storage makes possible to gain cost savings by reduction of both the horizontal area of the detention tank and necessary depth of foundations. Simulation model of vacuum-driven storage tank has been developed to estimate potential profits of its application in urban drainage system. Although SWMM5 has no direct options for vacuum tanks an existing functions (i.e. control rules) have been used to reflect its operation phases. Rainfall data used in simulations were recorded at raingage in Czestochowa during years 2010÷2012 with time interval of 10minutes. Simulation results gives overview to practical operation and maintenance cost (energy demand) of vacuum driven storage tanks depending of the ratio: vacuum-driven volume to total storage capacity. The following conclusion can be drawn from this investigations: vacuum-driven storage tanks are characterized by uncomplicated construction and control systems, thus can be applied in newly developed as well as in the existing urban drainage systems. the application of vacuum in underground detention facilities makes possible to increase of the storage capacity of existing reservoirs by usage the space above the maximum depth. Possible increase of storage capacity can achieve even a few dozen percent at relatively low investment costs. vacuum driven storage tanks can be included in existing simulation software (i.e. SWMM) using options intended for pumping stations (including control and action rules ).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart water metering technologies for residential buildings offer, in principle, great opportunities for sustainable urban water management. However, much of this potential is as yet unrealized. Despite that several ICT solutions have already been deployed aiming at optimum operations on the water utilities side (e.g. real time control for water networks, dynamic pump scheduling etc.), little work has been done to date on the consumer side. This paper presents a web-based platform targeting primarily the household end user. The platform enables consumers to monitor, on a real-time basis, the water demand of their household, providing feedback not only on the total water consumption and relevant costs but also on the efficiency (or otherwise) of specific indoor and outdoor uses. Targeting the reduction of consumption, the provided feedback is combined with notifications about possible leakages\bursts, and customised suggestions to improve the efficiency of existing household uses. It also enables various comparisons, with past consumption or even with that of similar households, aiming to motivate further the householder to become an active player in the water efficiency challenge. The issue of enhancing the platform’s functionality with energy timeseries is also discussed in view of recent advances in smart metering and the concept of “smart cities”. The paper presents a prototype of this web-based application and critically discusses first testing results and insights. It also presents the way in which the platform communicates with central databases, at the water utility level. It is suggested that such developments are closing the gap between technology availability and usefulness to end users and could help both the uptake of smart metering and awareness raising leading, potentially, to significant reductions of urban water consumption. The work has received funding from the European Union FP7 Programme through the iWIDGET Project, under grant agreement no318272.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the past, the focus of drainage design was on sizing pipes and storages in order to provide sufficient network capacity. This traditional approach, together with computer software and technical guidance, had been successful for many years. However, due to rapid population growth and urbanisation, the requirements of a “good” drainage design have also changed significantly. In addition to water management, other aspects such as environmental impacts, amenity values and carbon footprint have to be considered during the design process. Going forward, we need to address the key sustainability issues carefully and practically. The key challenge of moving from simple objectives (e.g. capacity and costs) to complicated objectives (e.g. capacity, flood risk, environment, amenity etc) is the difficulty to strike a balance between various objectives and to justify potential benefits and compromises. In order to assist decision makers, we developed a new decision support system for drainage design. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. The evaluation framework is used for the quantification of performance, life-cycle costs and benefits of different drainage systems. The optimisation tool can search for feasible combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will discuss real-world application of the decision support system. A number of case studies have been developed based on recent drainage projects in China. We will use the case studies to illustrate how the evaluation framework highlights and compares the pros and cons of various design options. We will also discuss how the design parameters can be optimised based on the preferences of decision makers. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For many years, drainage design was mainly about providing sufficient network capacity. This traditional approach had been successful with the aid of computer software and technical guidance. However, the drainage design criteria had been evolving due to rapid population growth, urbanisation, climate change and increasing sustainability awareness. Sustainable drainage systems that bring benefits in addition to water management have been recommended as better alternatives to conventional pipes and storages. Although the concepts and good practice guidance had already been communicated to decision makers and public for years, network capacity still remains a key design focus in many circumstances while the additional benefits are generally considered secondary only. Yet, the picture is changing. The industry begins to realise that delivering multiple benefits should be given the top priority while the drainage service can be considered a secondary benefit instead. The shift in focus means the industry has to adapt to new design challenges. New guidance and computer software are needed to assist decision makers. For this purpose, we developed a new decision support system. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. Users can systematically quantify the performance, life-cycle costs and benefits of different drainage systems using the evaluation framework. The optimisation tool can assist users to determine combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will focus on the optimisation component of the decision support framework. The optimisation problem formation, parameters and general configuration will be discussed. We will also look at the sensitivity of individual variables and the benchmark results obtained using common multi-objective optimisation algorithms. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.