2 resultados para Simulation and modelling

em CUNY Academic Works


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serious games are a category of games which are designed for a specific purpose other than for pure entertainment. It is not a new concept but serious games using real data, coupled with real time modelling and combining model results with social and economic factors opens up a new paradigm for active stakeholder participation. DHI and UNEP-DHI Centre initiated a project called Aqua Republica where a virtual world is developed which allows participants to develop a river basin and visualise the consequences of their decisions. The aim of this project is to raise awareness of the interconnectivity of water and educate on integrated water resources management. Aqua Republica combines a game layer with a water allocation model, MIKE BASIN, to create an interactive, realistic virtual environment where players play the role of a catchment manager of an undeveloped river catchment. Their main objective is to develop the river catchment to be as prosperous as it can be. To achieve that, they will need to generate a good economy in the catchment to provide the funds needed for development, have a steady food supply for their population and enough energy and water for the catchment. Through these actions by the player, a meaningful play is established to engage players and to educate them about the complex relationships between developmental actions in a river basin and the natural environment as well as their consequences. The game layer also consists of a reward system to encourage learning. People can play and replay the game, get rewarded from performing the right principles and penalised from failures in the game. This abstract will explain the concept of the game and how it has been used in a stakeholder participation environment.