2 resultados para Searching and sorting
em CUNY Academic Works
Resumo:
I consider the case for genuinely anonymous web searching. Big data seems to have it in for privacy. The story is well known, particularly since the dawn of the web. Vastly more personal information, monumental and quotidian, is gathered than in the pre-digital days. Once gathered it can be aggregated and analyzed to produce rich portraits, which in turn permit unnerving prediction of our future behavior. The new information can then be shared widely, limiting prospects and threatening autonomy. How should we respond? Following Nissenbaum (2011) and Brunton and Nissenbaum (2011 and 2013), I will argue that the proposed solutions—consent, anonymity as conventionally practiced, corporate best practices, and law—fail to protect us against routine surveillance of our online behavior. Brunton and Nissenbaum rightly maintain that, given the power imbalance between data holders and data subjects, obfuscation of one’s online activities is justified. Obfuscation works by generating “misleading, false, or ambiguous data with the intention of confusing an adversary or simply adding to the time or cost of separating good data from bad,” thus decreasing the value of the data collected (Brunton and Nissenbaum, 2011). The phenomenon is as old as the hills. Natural selection evidently blundered upon the tactic long ago. Take a savory butterfly whose markings mimic those of a toxic cousin. From the point of view of a would-be predator the data conveyed by the pattern is ambiguous. Is the bug lunch or potential last meal? In the light of the steep costs of a mistake, the savvy predator goes hungry. Online obfuscation works similarly, attempting for instance to disguise the surfer’s identity (Tor) or the nature of her queries (Howe and Nissenbaum 2009). Yet online obfuscation comes with significant social costs. First, it implies free riding. If I’ve installed an effective obfuscating program, I’m enjoying the benefits of an apparently free internet without paying the costs of surveillance, which are shifted entirely onto non-obfuscators. Second, it permits sketchy actors, from child pornographers to fraudsters, to operate with near impunity. Third, online merchants could plausibly claim that, when we shop online, surveillance is the price we pay for convenience. If we don’t like it, we should take our business to the local brick-and-mortar and pay with cash. Brunton and Nissenbaum have not fully addressed the last two costs. Nevertheless, I think the strict defender of online anonymity can meet these objections. Regarding the third, the future doesn’t bode well for offline shopping. Consider music and books. Intrepid shoppers can still find most of what they want in a book or record store. Soon, though, this will probably not be the case. And then there are those who, for perfectly good reasons, are sensitive about doing some of their shopping in person, perhaps because of their weight or sexual tastes. I argue that consumers should not have to pay the price of surveillance every time they want to buy that catchy new hit, that New York Times bestseller, or a sex toy.
Resumo:
HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.