1 resultado para Research Methodology, Input-Output Approach, Student Experience Of Learning, Learning Inventory
em CUNY Academic Works
Filtro por publicador
- Aberdeen University (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (18)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Campus - Alm@DL - Università di Bologna (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Archive of European Integration (22)
- Aston University Research Archive (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Brock University, Canada (22)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (66)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (30)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (43)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (8)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (23)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (16)
- DRUM (Digital Repository at the University of Maryland) (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (3)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (21)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (12)
- Universidade do Minho (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (53)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Cumbria Insight - United Kingdom (1)
- University of Michigan (25)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (5)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (7)
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.