1 resultado para Receiver operating characterictics
em CUNY Academic Works
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (11)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (139)
- Boston University Digital Common (3)
- Brock University, Canada (2)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (72)
- CentAUR: Central Archive University of Reading - UK (24)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (3)
- Collection Of Biostatistics Research Archive (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (9)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Helda - Digital Repository of University of Helsinki (3)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (56)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (82)
- Queensland University of Technology - ePrints Archive (105)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (2)
- Scielo España (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Université de Lausanne, Switzerland (8)
- Université de Montréal (2)
- Université de Montréal, Canada (6)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (3)
- University of Washington (3)
- WestminsterResearch - UK (9)
Resumo:
With the service life of water supply network (WSN) growth, the growing phenomenon of aging pipe network has become exceedingly serious. As urban water supply network is hidden underground asset, it is difficult for monitoring staff to make a direct classification towards the faults of pipe network by means of the modern detecting technology. In this paper, based on the basic property data (e.g. diameter, material, pressure, distance to pump, distance to tank, load, etc.) of water supply network, decision tree algorithm (C4.5) has been carried out to classify the specific situation of water supply pipeline. Part of the historical data was used to establish a decision tree classification model, and the remaining historical data was used to validate this established model. Adopting statistical methods were used to access the decision tree model including basic statistical method, Receiver Operating Characteristic (ROC) and Recall-Precision Curves (RPC). These methods has been successfully used to assess the accuracy of this established classification model of water pipe network. The purpose of classification model was to classify the specific condition of water pipe network. It is important to maintain the pipeline according to the classification results including asset unserviceable (AU), near perfect condition (NPC) and serious deterioration (SD). Finally, this research focused on pipe classification which plays a significant role in maintaining water supply networks in the future.