1 resultado para Process control - Statistical methods
em CUNY Academic Works
Filtro por publicador
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Archive of European Integration (1)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (55)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (53)
- Cochin University of Science & Technology (CUSAT), India (14)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (71)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (9)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (15)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (93)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (18)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (17)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (116)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (37)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (12)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (24)
- Universitat de Girona, Spain (16)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (51)
- Université de Montréal, Canada (53)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (13)
- University of Queensland eSpace - Australia (71)
- University of Washington (2)
Resumo:
With the service life of water supply network (WSN) growth, the growing phenomenon of aging pipe network has become exceedingly serious. As urban water supply network is hidden underground asset, it is difficult for monitoring staff to make a direct classification towards the faults of pipe network by means of the modern detecting technology. In this paper, based on the basic property data (e.g. diameter, material, pressure, distance to pump, distance to tank, load, etc.) of water supply network, decision tree algorithm (C4.5) has been carried out to classify the specific situation of water supply pipeline. Part of the historical data was used to establish a decision tree classification model, and the remaining historical data was used to validate this established model. Adopting statistical methods were used to access the decision tree model including basic statistical method, Receiver Operating Characteristic (ROC) and Recall-Precision Curves (RPC). These methods has been successfully used to assess the accuracy of this established classification model of water pipe network. The purpose of classification model was to classify the specific condition of water pipe network. It is important to maintain the pipeline according to the classification results including asset unserviceable (AU), near perfect condition (NPC) and serious deterioration (SD). Finally, this research focused on pipe classification which plays a significant role in maintaining water supply networks in the future.