2 resultados para Popularity.
em CUNY Academic Works
Resumo:
Each year search engines like Google, Bing and Yahoo, complete trillions of search queries online. Students are especially dependent on these search tools because of their popularity, convenience and accessibility. However, what students are unaware of, by choice or naiveté is the amount of personal information that is collected during each search session, how that data is used and who is interested in their online behavior profile. Privacy policies are frequently updated in favor of the search companies but are lengthy and often are perused briefly or ignored entirely with little thought about how personal web habits are being exploited for analytics and marketing. As an Information Literacy instructor, and a member of the Electronic Frontier Foundation, I believe in the importance of educating college students and web users in general that they have a right to privacy online. Class discussions on the topic of web privacy have yielded an interesting perspective on internet search usage. Students are unaware of how their online behavior is recorded and have consistently expressed their hesitancy to use tools that disguise or delete their IP address because of the stigma that it may imply they have something to hide or are engaging in illegal activity. Additionally, students fear they will have to surrender the convenience of uber connectivity in their applications to maintain their privacy. The purpose of this lightning presentation is to provide educators with a lesson plan highlighting and simplifying the privacy terms for the three major search engines, Google, Bing and Yahoo. This presentation focuses on what data these search engines collect about users, how that data is used and alternative search solutions, like DuckDuckGo, for increased privacy. Students will directly benefit from this lesson because informed internet users can protect their data, feel safer online and become more effective web searchers.
Resumo:
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.