2 resultados para Objective lenses
em CUNY Academic Works
Resumo:
For many years, drainage design was mainly about providing sufficient network capacity. This traditional approach had been successful with the aid of computer software and technical guidance. However, the drainage design criteria had been evolving due to rapid population growth, urbanisation, climate change and increasing sustainability awareness. Sustainable drainage systems that bring benefits in addition to water management have been recommended as better alternatives to conventional pipes and storages. Although the concepts and good practice guidance had already been communicated to decision makers and public for years, network capacity still remains a key design focus in many circumstances while the additional benefits are generally considered secondary only. Yet, the picture is changing. The industry begins to realise that delivering multiple benefits should be given the top priority while the drainage service can be considered a secondary benefit instead. The shift in focus means the industry has to adapt to new design challenges. New guidance and computer software are needed to assist decision makers. For this purpose, we developed a new decision support system. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. Users can systematically quantify the performance, life-cycle costs and benefits of different drainage systems using the evaluation framework. The optimisation tool can assist users to determine combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will focus on the optimisation component of the decision support framework. The optimisation problem formation, parameters and general configuration will be discussed. We will also look at the sensitivity of individual variables and the benchmark results obtained using common multi-objective optimisation algorithms. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.