1 resultado para Non-Local Model
em CUNY Academic Works
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (23)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (5)
- Aston University Research Archive (25)
- Australian Council for Educational Research (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (111)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (56)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (41)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (6)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- Duke University (2)
- Earth Simulator Research Results Repository (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (17)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (6)
- Publishing Network for Geoscientific & Environmental Data (9)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (22)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (102)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (31)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (35)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (13)
- Universidad de Alicante (9)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (18)
- Universidade dos Açores - Portugal (6)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (53)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (26)
- University of Queensland eSpace - Australia (78)
- University of Washington (1)
Resumo:
Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.