1 resultado para Model-based Categorical Sequence Clustering
em CUNY Academic Works
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (52)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (50)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (85)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (62)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (35)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Massachusetts Institute of Technology (6)
- National Center for Biotechnology Information - NCBI (10)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Projetos e Dissertações em Sistemas de Informação e Gestão do Conhecimento (1)
- Publishing Network for Geoscientific & Environmental Data (14)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (25)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (29)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (27)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (56)
- Universidade Complutense de Madrid (3)
- Universidade do Algarve (1)
- Universidade do Minho (8)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (103)
- Université de Montréal, Canada (6)
- University of Michigan (1)
- University of Queensland eSpace - Australia (63)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.