1 resultado para Medicine Research Statistical methods
em CUNY Academic Works
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (57)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (40)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (7)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (11)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (21)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (14)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (29)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (105)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (93)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (54)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (17)
- University of Queensland eSpace - Australia (28)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
With the service life of water supply network (WSN) growth, the growing phenomenon of aging pipe network has become exceedingly serious. As urban water supply network is hidden underground asset, it is difficult for monitoring staff to make a direct classification towards the faults of pipe network by means of the modern detecting technology. In this paper, based on the basic property data (e.g. diameter, material, pressure, distance to pump, distance to tank, load, etc.) of water supply network, decision tree algorithm (C4.5) has been carried out to classify the specific situation of water supply pipeline. Part of the historical data was used to establish a decision tree classification model, and the remaining historical data was used to validate this established model. Adopting statistical methods were used to access the decision tree model including basic statistical method, Receiver Operating Characteristic (ROC) and Recall-Precision Curves (RPC). These methods has been successfully used to assess the accuracy of this established classification model of water pipe network. The purpose of classification model was to classify the specific condition of water pipe network. It is important to maintain the pipeline according to the classification results including asset unserviceable (AU), near perfect condition (NPC) and serious deterioration (SD). Finally, this research focused on pipe classification which plays a significant role in maintaining water supply networks in the future.