2 resultados para Management Development

em CUNY Academic Works


Relevância:

70.00% 70.00%

Publicador:

Resumo:

GCM outputs such as CMIP3 are available via network access to PCMDI web site. Meteorological researchers are familiar with the usage of the GCM data, but the most of researchers other than meteorology such as agriculture, civil engineering, etc., and general people are not familiar with the GCM. There are some difficulties to use GCM; 1) to download the enormous quantity of data, 2) to understand the GCM methodology, parameters and grids. In order to provide a quick access way to GCM, Climate Change Information Database has been developed. The purpose of the database is to bridge the users and meteorological specialists and to facilitate the understanding the climate changes. The resolution of the data is unified, and climate change amount or factors for each meteorological element are provided from the database. All data in the database are interpolated on the same 80km mesh. Available data are the present-future projections of 27 GCMs, 16 meteorological elements (precipitation, temperature, etc.), 3 emission scenarios (A1B, A2, B1). We showed the summary of this database to residents in Toyama prefecture and measured the effect of showing and grasped the image for the climate change by using the Internet questionary survey. The persons who feel a climate change at the present tend to feel the additional changes in the future. It is important to show the monitoring results of climate change for a citizen and promote the understanding for the climate change that had already occurred. It has been shown that general images for the climate change promote to understand the need of the mitigation, and that it is important to explain about the climate change that might occur in the future even if it did not occur at the present in order to have people recognize widely the need of the adaptation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study is to develop a Pollution Early Warning System (PEWS) for efficient management of water quality in oyster harvesting areas. To that end, this paper presents a web-enabled, user-friendly PEWS for managing water quality in oyster harvesting areas along Louisiana Gulf Coast, USA. The PEWS consists of (1) an Integrated Space-Ground Sensing System (ISGSS) gathering data for environmental factors influencing water quality, (2) an Artificial Neural Network (ANN) model for predicting the level of fecal coliform bacteria, and (3) a web-enabled, user-friendly Geographic Information System (GIS) platform for issuing water pollution advisories and managing oyster harvesting waters. The ISGSS (data acquisition system) collects near real-time environmental data from various sources, including NASA MODIS Terra and Aqua satellites and in-situ sensing stations managed by the USGS and the NOAA. The ANN model is developed using the ANN program in MATLAB Toolbox. The ANN model involves a total of 6 independent environmental variables, including rainfall, tide, wind, salinity, temperature, and weather type along with 8 different combinations of the independent variables. The ANN model is constructed and tested using environmental and bacteriological data collected monthly from 2001 – 2011 by Louisiana Molluscan Shellfish Program at seven oyster harvesting areas in Louisiana Coast, USA. The ANN model is capable of explaining about 76% of variation in fecal coliform levels for model training data and 44% for independent data. The web-based GIS platform is developed using ArcView GIS and ArcIMS. The web-based GIS system can be employed for mapping fecal coliform levels, predicted by the ANN model, and potential risks of norovirus outbreaks in oyster harvesting waters. The PEWS is able to inform decision-makers of potential risks of fecal pollution and virus outbreak on a daily basis, greatly reducing the risk of contaminated oysters to human health.