2 resultados para M48 (Tank)
em CUNY Academic Works
Resumo:
As a result of urbanization, stormwater runoff flow rates and volumes are significantly increased due to increasing impervious land cover and the decreased availability of depression storage. Storage tanks are the basic devices to efficiently control the flow rate in drainage systems during wet weather. Presented in the paper conception of vacuum-driven detention tanks allows to increase the storage capacity by usage of space above the free surface water elevation at the inlet channel. Partial vacuum storage makes possible to gain cost savings by reduction of both the horizontal area of the detention tank and necessary depth of foundations. Simulation model of vacuum-driven storage tank has been developed to estimate potential profits of its application in urban drainage system. Although SWMM5 has no direct options for vacuum tanks an existing functions (i.e. control rules) have been used to reflect its operation phases. Rainfall data used in simulations were recorded at raingage in Czestochowa during years 2010÷2012 with time interval of 10minutes. Simulation results gives overview to practical operation and maintenance cost (energy demand) of vacuum driven storage tanks depending of the ratio: vacuum-driven volume to total storage capacity. The following conclusion can be drawn from this investigations: vacuum-driven storage tanks are characterized by uncomplicated construction and control systems, thus can be applied in newly developed as well as in the existing urban drainage systems. the application of vacuum in underground detention facilities makes possible to increase of the storage capacity of existing reservoirs by usage the space above the maximum depth. Possible increase of storage capacity can achieve even a few dozen percent at relatively low investment costs. vacuum driven storage tanks can be included in existing simulation software (i.e. SWMM) using options intended for pumping stations (including control and action rules ).
Resumo:
With the service life of water supply network (WSN) growth, the growing phenomenon of aging pipe network has become exceedingly serious. As urban water supply network is hidden underground asset, it is difficult for monitoring staff to make a direct classification towards the faults of pipe network by means of the modern detecting technology. In this paper, based on the basic property data (e.g. diameter, material, pressure, distance to pump, distance to tank, load, etc.) of water supply network, decision tree algorithm (C4.5) has been carried out to classify the specific situation of water supply pipeline. Part of the historical data was used to establish a decision tree classification model, and the remaining historical data was used to validate this established model. Adopting statistical methods were used to access the decision tree model including basic statistical method, Receiver Operating Characteristic (ROC) and Recall-Precision Curves (RPC). These methods has been successfully used to assess the accuracy of this established classification model of water pipe network. The purpose of classification model was to classify the specific condition of water pipe network. It is important to maintain the pipeline according to the classification results including asset unserviceable (AU), near perfect condition (NPC) and serious deterioration (SD). Finally, this research focused on pipe classification which plays a significant role in maintaining water supply networks in the future.