2 resultados para Local officials and employees
em CUNY Academic Works
Resumo:
I consider the case for genuinely anonymous web searching. Big data seems to have it in for privacy. The story is well known, particularly since the dawn of the web. Vastly more personal information, monumental and quotidian, is gathered than in the pre-digital days. Once gathered it can be aggregated and analyzed to produce rich portraits, which in turn permit unnerving prediction of our future behavior. The new information can then be shared widely, limiting prospects and threatening autonomy. How should we respond? Following Nissenbaum (2011) and Brunton and Nissenbaum (2011 and 2013), I will argue that the proposed solutions—consent, anonymity as conventionally practiced, corporate best practices, and law—fail to protect us against routine surveillance of our online behavior. Brunton and Nissenbaum rightly maintain that, given the power imbalance between data holders and data subjects, obfuscation of one’s online activities is justified. Obfuscation works by generating “misleading, false, or ambiguous data with the intention of confusing an adversary or simply adding to the time or cost of separating good data from bad,” thus decreasing the value of the data collected (Brunton and Nissenbaum, 2011). The phenomenon is as old as the hills. Natural selection evidently blundered upon the tactic long ago. Take a savory butterfly whose markings mimic those of a toxic cousin. From the point of view of a would-be predator the data conveyed by the pattern is ambiguous. Is the bug lunch or potential last meal? In the light of the steep costs of a mistake, the savvy predator goes hungry. Online obfuscation works similarly, attempting for instance to disguise the surfer’s identity (Tor) or the nature of her queries (Howe and Nissenbaum 2009). Yet online obfuscation comes with significant social costs. First, it implies free riding. If I’ve installed an effective obfuscating program, I’m enjoying the benefits of an apparently free internet without paying the costs of surveillance, which are shifted entirely onto non-obfuscators. Second, it permits sketchy actors, from child pornographers to fraudsters, to operate with near impunity. Third, online merchants could plausibly claim that, when we shop online, surveillance is the price we pay for convenience. If we don’t like it, we should take our business to the local brick-and-mortar and pay with cash. Brunton and Nissenbaum have not fully addressed the last two costs. Nevertheless, I think the strict defender of online anonymity can meet these objections. Regarding the third, the future doesn’t bode well for offline shopping. Consider music and books. Intrepid shoppers can still find most of what they want in a book or record store. Soon, though, this will probably not be the case. And then there are those who, for perfectly good reasons, are sensitive about doing some of their shopping in person, perhaps because of their weight or sexual tastes. I argue that consumers should not have to pay the price of surveillance every time they want to buy that catchy new hit, that New York Times bestseller, or a sex toy.
Resumo:
While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.