1 resultado para Limitation of Actions
em CUNY Academic Works
Filtro por publicador
- University of Cagliari UniCA Eprints (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (16)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (57)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (5)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (39)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (4)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (22)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (13)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (6)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (28)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (90)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (14)
- Repositório digital da Fundação Getúlio Vargas - FGV (47)
- Repositório Institucional da Universidade de Aveiro - Portugal (9)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (11)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (49)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (32)
- University of Michigan (17)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.