1 resultado para Least-squares method
em CUNY Academic Works
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (19)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (7)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (76)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (9)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (27)
- Helda - Digital Repository of University of Helsinki (10)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (94)
- Instituto Politécnico de Bragança (3)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (142)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (16)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (5)
Resumo:
Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.