1 resultado para Learning Networks
em CUNY Academic Works
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (23)
- Applied Math and Science Education Repository - Washington - USA (3)
- Archive of European Integration (2)
- Aston University Research Archive (61)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (97)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (23)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (178)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (13)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Open Access Repository of Association for Learning Technology (ALT) (3)
- Open University Netherlands (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (30)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (7)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (23)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (10)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (24)
- Université de Montréal (2)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (195)
- University of Washington (7)
- WestminsterResearch - UK (2)
Resumo:
This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.