2 resultados para Interface Model

em CUNY Academic Works


Relevância:

30.00% 30.00%

Publicador:

Resumo:

HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.