5 resultados para Information privacy and security
em CUNY Academic Works
Resumo:
We live in a world full of social media and portable technology that allows for the effortless access to, and sharing of, information. While this constant connection can be viewed as a benefit by some, there have been recent, sometimes embarrassing, instances throughout the world that show just how quickly any expectation of privacy can be destroyed. From pictures of poorly dressed shoppers at a grocery store to customers recording interactions with their servers at restaurants, the internet is full of media (all with the potential to go viral) created and posted without consent of all parties captured. This risk to privacy is not just limited to retail and restaurants, as being in any situation amongst people puts you at risk, including being in an academic classroom. Anyone providing in-class instruction, be they professor or librarian, can be at risk for this type of violation of privacy. In addition, the students in the class are also at risk for being unwittingly captured by their classmates. To combat this, colleges and universities are providing recommendations to faculty regarding this issue, such as including suggested syllabus statements about classroom recording by students. In some instances, colleges and universities have instituted formal policies with strict penalties for violators. An overview of current privacy law as it relates to an academic setting is discussed as well as recent, newsworthy instances of student recording in the classroom and the resulting controversies. Additionally, there is a discussion highlighting various recommendations and formal policies that have been issued and adopted by colleges and universities around the country. Finally, advice is offered about what librarians can do to educate students, faculty, and staff about the privacy rights of others and the potential harm that could come from posting to social media and the open web images and video of others without their consent.
Resumo:
In the past few years, libraries have started to design public programs that educate patrons about different tools and techniques to protect personal privacy. But do end user solutions provide adequate safeguards against surveillance by corporate and government actors? What does a comprehensive plan for privacy entail in order that libraries live up to their privacy values? In this paper, the authors discuss the complexity of surveillance architecture that the library institution might confront when seeking to defend the privacy rights of patrons. This architecture consists of three main parts: physical or material aspects, logical characteristics, and social factors of information and communication flows in the library setting. For each category, the authors will present short case studies that are culled from practitioner experience, research, and public discourse. The case studies probe the challenges faced by the library—not only when making hardware and software choices, but also choices related to staffing and program design. The paper shows that privacy choices intersect not only with free speech and chilling effects, but also with questions that concern intellectual property, organizational development, civic engagement, technological innovation, public infrastructure, and more. The paper ends with discussion of what libraries will require in order to sustain and improve efforts to serve as stewards of privacy in the 21st century.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
GCM outputs such as CMIP3 are available via network access to PCMDI web site. Meteorological researchers are familiar with the usage of the GCM data, but the most of researchers other than meteorology such as agriculture, civil engineering, etc., and general people are not familiar with the GCM. There are some difficulties to use GCM; 1) to download the enormous quantity of data, 2) to understand the GCM methodology, parameters and grids. In order to provide a quick access way to GCM, Climate Change Information Database has been developed. The purpose of the database is to bridge the users and meteorological specialists and to facilitate the understanding the climate changes. The resolution of the data is unified, and climate change amount or factors for each meteorological element are provided from the database. All data in the database are interpolated on the same 80km mesh. Available data are the present-future projections of 27 GCMs, 16 meteorological elements (precipitation, temperature, etc.), 3 emission scenarios (A1B, A2, B1). We showed the summary of this database to residents in Toyama prefecture and measured the effect of showing and grasped the image for the climate change by using the Internet questionary survey. The persons who feel a climate change at the present tend to feel the additional changes in the future. It is important to show the monitoring results of climate change for a citizen and promote the understanding for the climate change that had already occurred. It has been shown that general images for the climate change promote to understand the need of the mitigation, and that it is important to explain about the climate change that might occur in the future even if it did not occur at the present in order to have people recognize widely the need of the adaptation.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.