2 resultados para Homology of groups
em CUNY Academic Works
Resumo:
This article highlights the potential benefits that the Kohonen method has for the classification of rivers with similar characteristics by determining regional ecological flows using the ELOHA (Ecological Limits of Hydrologic Alteration) methodology. Currently, there are many methodologies for the classification of rivers, however none of them include the characteristics found in Kohonen method such as (i) providing the number of groups that actually underlie the information presented, (ii) used to make variable importance analysis, (iii) which in any case can display two-dimensional classification process, and (iv) that regardless of the parameters used in the model the clustering structure remains. In order to evaluate the potential benefits of the Kohonen method, 174 flow stations distributed along the great river basin “Magdalena-Cauca” (Colombia) were analyzed. 73 variables were obtained for the classification process in each case. Six trials were done using different combinations of variables and the results were validated against reference classification obtained by Ingfocol in 2010, whose results were also framed using ELOHA guidelines. In the process of validation it was found that two of the tested models reproduced a level higher than 80% of the reference classification with the first trial, meaning that more than 80% of the flow stations analyzed in both models formed invariant groups of streams.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.