2 resultados para Floodplain lakes
em CUNY Academic Works
Resumo:
The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.
Resumo:
A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.