8 resultados para Flood risk management

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small and medium-sized companies and other enterprises (SMEs) around the world are exposed to flood risk and many of the 4.5 million in the UK are at risk. As SMEs represent almost half of total business turnover in the UK, their protection is a vital part of the drive for greater climate change resilience. However, few have measures in place to ensure the continuity of their activities during a flood and its aftermath. The SESAME project aims to develop tools that encourage businesses to discover ways of becoming more resilient to floods and to appreciate how much better off they will be once they have adapted to the ongoing risk. By taking some of the mystery out of flooding and flood risk, it aims to make it susceptible to the same business acumen that enables the UK’s SMEs to deal with the many other challenges they face. In this paper we will report on the different aspects of the research in the project Understanding behaviour Changing behaviour Modelling impacts Economic impacts Through the above the project will advise government, local authorities and other public bodies on how to improve their responses to floods and will enable them to recommend ways to improve the guidelines provided to SMEs in flood risk areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past, the focus of drainage design was on sizing pipes and storages in order to provide sufficient network capacity. This traditional approach, together with computer software and technical guidance, had been successful for many years. However, due to rapid population growth and urbanisation, the requirements of a “good” drainage design have also changed significantly. In addition to water management, other aspects such as environmental impacts, amenity values and carbon footprint have to be considered during the design process. Going forward, we need to address the key sustainability issues carefully and practically. The key challenge of moving from simple objectives (e.g. capacity and costs) to complicated objectives (e.g. capacity, flood risk, environment, amenity etc) is the difficulty to strike a balance between various objectives and to justify potential benefits and compromises. In order to assist decision makers, we developed a new decision support system for drainage design. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. The evaluation framework is used for the quantification of performance, life-cycle costs and benefits of different drainage systems. The optimisation tool can search for feasible combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will discuss real-world application of the decision support system. A number of case studies have been developed based on recent drainage projects in China. We will use the case studies to illustrate how the evaluation framework highlights and compares the pros and cons of various design options. We will also discuss how the design parameters can be optimised based on the preferences of decision makers. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a highly urbanized and flood prone region, Flanders has experienced multiple floods causing significant damage in the past. In response to the floods of 1998 and 2002 the Flemish Environment Agency, responsible for managing 1 400 km of unnavigable rivers, started setting up a real time flood forecasting system in 2003. Currently the system covers almost 2 000 km of unnavigable rivers, for which flood forecasts are accessible online (www.waterinfo.be). The forecasting system comprises more than 1 000 hydrologic and 50 hydrodynamic models which are supplied with radar rainfall, rainfall forecasts and on-site observations. Forecasts for the next 2 days are generated hourly, while 10 day forecasts are generated twice a day. Additionally, twice daily simulations based on percentile rainfall forecasts (from EPS predictions) result in uncertainty bands for the latter. Subsequent flood forecasts use the most recent rainfall predictions and observed parameters at any time while uncertainty on the longer-term is taken into account. The flood forecasting system produces high resolution dynamic flood maps and graphs at about 200 river gauges and more than 3 000 forecast points. A customized emergency response system generates phone calls and text messages to a team of hydrologists initiating a pro-active response to prevent upcoming flood damage. The flood forecasting system of the Flemish Environment Agency is constantly evolving and has proven to be an indispensable tool in flood crisis management. This was clearly the case during the November 2010 floods, when the agency issued a press release 2 days in advance allowing water managers, emergency services and civilians to take measures.