8 resultados para Data modeling
em CUNY Academic Works
Resumo:
HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.
Resumo:
In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ε model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ε model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. 3DVAR allows also to identify and quantify shortcomings of the numerical model. Such comprehensive analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows.
Resumo:
Jakarta is vulnerable to flooding mainly caused by prolonged and heavy rainfall and thus a robust hydrological modeling is called for. A good quality of spatial precipitation data is therefore desired so that a good hydrological model could be achieved. Two types of rainfall sources are available: satellite and gauge station observations. At-site rainfall is considered to be a reliable and accurate source of rainfall. However, the limited number of stations makes the spatial interpolation not very much appealing. On the other hand, the gridded rainfall nowadays has high spatial resolution and improved accuracy, but still, relatively less accurate than its counterpart. To achieve a better precipitation data set, the study proposes cokriging method, a blending algorithm, to yield the blended satellite-gauge gridded rainfall at approximately 10-km resolution. The Global Satellite Mapping of Precipitation (GSMaP, 0.1⁰×0.1⁰) and daily rainfall observations from gauge stations are used. The blended product is compared with satellite data by cross-validation method. The newly-yield blended product is then utilized to re-calibrate the hydrological model. Several scenarios are simulated by the hydrological models calibrated by gauge observations alone and blended product. The performance of two calibrated hydrological models is then assessed and compared based on simulated and observed runoff.
Resumo:
Vertical stream bed erosion has been studied routinely and its modeling is getting widespread acceptance. The same cannot be said with lateral stream bank erosion since its measurement or numerical modeling is very challenging. Bank erosion, however, can be important to channel morphology. It may contribute significantly to the overall sediment budget of a stream, is a leading cause of channel migration, and is the cause of major channel maintenance. However, combined vertical and lateral channel evolution is seldom addressed. In this study, a new geofluival numerical model is developed to simulate combined vertical and lateral channel evolution. Vertical erosion is predicted with a 2D depth-averaged model SRH-2D, while lateral erosion is simulated with a linear retreat bank erosion model developed in this study. SRH-2D and the bank erosion model are coupled together both spatially and temporally through a common mesh and the same time advancement. The new geofluvial model is first tested and verified using laboratory meander channels; good agreement are obtained between predicted bank retreat and measured data. The model is then applied to a 16-kilometer reach of Chosui River, Taiwan. Vertical and lateral channel evolution during a three-year period (2004 to 2007) is simulated and results are compared with the field data. It is shown that the geofluvial model correctly captures all major erosion and deposition patterns. The new model is shown to be useful for identifying potential erosion sites and providing information for river maintenance planning.
Resumo:
The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.
Resumo:
Running hydrodynamic models interactively allows both visual exploration and change of model state during simulation. One of the main characteristics of an interactive model is that it should provide immediate feedback to the user, for example respond to changes in model state or view settings. For this reason, such features are usually only available for models with a relatively small number of computational cells, which are used mainly for demonstration and educational purposes. It would be useful if interactive modeling would also work for models typically used in consultancy projects involving large scale simulations. This results in a number of technical challenges related to the combination of the model itself and the visualisation tools (scalability, implementation of an appropriate API for control and access to the internal state). While model parallelisation is increasingly addressed by the environmental modeling community, little effort has been spent on developing a high-performance interactive environment. What can we learn from other high-end visualisation domains such as 3D animation, gaming, virtual globes (Autodesk 3ds Max, Second Life, Google Earth) that also focus on efficient interaction with 3D environments? In these domains high efficiency is usually achieved by the use of computer graphics algorithms such as surface simplification depending on current view, distance to objects, and efficient caching of the aggregated representation of object meshes. We investigate how these algorithms can be re-used in the context of interactive hydrodynamic modeling without significant changes to the model code and allowing model operation on both multi-core CPU personal computers and high-performance computer clusters.
Resumo:
Existing distributed hydrologic models are complex and computationally demanding for using as a rapid-forecasting policy-decision tool, or even as a class-room educational tool. In addition, platform dependence, specific input/output data structures and non-dynamic data-interaction with pluggable software components inside the existing proprietary frameworks make these models restrictive only to the specialized user groups. RWater is a web-based hydrologic analysis and modeling framework that utilizes the commonly used R software within the HUBzero cyber infrastructure of Purdue University. RWater is designed as an integrated framework for distributed hydrologic simulation, along with subsequent parameter optimization and visualization schemes. RWater provides platform independent web-based interface, flexible data integration capacity, grid-based simulations, and user-extensibility. RWater uses RStudio to simulate hydrologic processes on raster based data obtained through conventional GIS pre-processing. The program integrates Shuffled Complex Evolution (SCE) algorithm for parameter optimization. Moreover, RWater enables users to produce different descriptive statistics and visualization of the outputs at different temporal resolutions. The applicability of RWater will be demonstrated by application on two watersheds in Indiana for multiple rainfall events.
Resumo:
Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.