1 resultado para Data Mining, Yield Improvement, Self Organising Map, Clustering Quality
em CUNY Academic Works
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (6)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- Archive of European Integration (1)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (99)
- Cochin University of Science & Technology (CUSAT), India (18)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (48)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (20)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (40)
- DRUM (Digital Repository at the University of Maryland) (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (60)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (17)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (4)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (46)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (25)
- Universidad de Alicante (13)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (46)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (19)
- Université de Lausanne, Switzerland (41)
- Université de Montréal, Canada (12)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (31)
- University of Southampton, United Kingdom (5)
- University of Washington (2)
- USA Library of Congress (1)
Resumo:
This article highlights the potential benefits that the Kohonen method has for the classification of rivers with similar characteristics by determining regional ecological flows using the ELOHA (Ecological Limits of Hydrologic Alteration) methodology. Currently, there are many methodologies for the classification of rivers, however none of them include the characteristics found in Kohonen method such as (i) providing the number of groups that actually underlie the information presented, (ii) used to make variable importance analysis, (iii) which in any case can display two-dimensional classification process, and (iv) that regardless of the parameters used in the model the clustering structure remains. In order to evaluate the potential benefits of the Kohonen method, 174 flow stations distributed along the great river basin “Magdalena-Cauca” (Colombia) were analyzed. 73 variables were obtained for the classification process in each case. Six trials were done using different combinations of variables and the results were validated against reference classification obtained by Ingfocol in 2010, whose results were also framed using ELOHA guidelines. In the process of validation it was found that two of the tested models reproduced a level higher than 80% of the reference classification with the first trial, meaning that more than 80% of the flow stations analyzed in both models formed invariant groups of streams.