6 resultados para Cyber-Physical Systems

em CUNY Academic Works


Relevância:

90.00% 90.00%

Publicador:

Resumo:

New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing distributed hydrologic models are complex and computationally demanding for using as a rapid-forecasting policy-decision tool, or even as a class-room educational tool. In addition, platform dependence, specific input/output data structures and non-dynamic data-interaction with pluggable software components inside the existing proprietary frameworks make these models restrictive only to the specialized user groups. RWater is a web-based hydrologic analysis and modeling framework that utilizes the commonly used R software within the HUBzero cyber infrastructure of Purdue University. RWater is designed as an integrated framework for distributed hydrologic simulation, along with subsequent parameter optimization and visualization schemes. RWater provides platform independent web-based interface, flexible data integration capacity, grid-based simulations, and user-extensibility. RWater uses RStudio to simulate hydrologic processes on raster based data obtained through conventional GIS pre-processing. The program integrates Shuffled Complex Evolution (SCE) algorithm for parameter optimization. Moreover, RWater enables users to produce different descriptive statistics and visualization of the outputs at different temporal resolutions. The applicability of RWater will be demonstrated by application on two watersheds in Indiana for multiple rainfall events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a highly urbanized and flood prone region, Flanders has experienced multiple floods causing significant damage in the past. In response to the floods of 1998 and 2002 the Flemish Environment Agency, responsible for managing 1 400 km of unnavigable rivers, started setting up a real time flood forecasting system in 2003. Currently the system covers almost 2 000 km of unnavigable rivers, for which flood forecasts are accessible online (www.waterinfo.be). The forecasting system comprises more than 1 000 hydrologic and 50 hydrodynamic models which are supplied with radar rainfall, rainfall forecasts and on-site observations. Forecasts for the next 2 days are generated hourly, while 10 day forecasts are generated twice a day. Additionally, twice daily simulations based on percentile rainfall forecasts (from EPS predictions) result in uncertainty bands for the latter. Subsequent flood forecasts use the most recent rainfall predictions and observed parameters at any time while uncertainty on the longer-term is taken into account. The flood forecasting system produces high resolution dynamic flood maps and graphs at about 200 river gauges and more than 3 000 forecast points. A customized emergency response system generates phone calls and text messages to a team of hydrologists initiating a pro-active response to prevent upcoming flood damage. The flood forecasting system of the Flemish Environment Agency is constantly evolving and has proven to be an indispensable tool in flood crisis management. This was clearly the case during the November 2010 floods, when the agency issued a press release 2 days in advance allowing water managers, emergency services and civilians to take measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mauri Model DMF is unique in its approach to the management of water resources as the framework offers a transparent and inclusive approach to considering the environmental, economic, social and cultural aspects of the decisions being contemplated. The Mauri Model DMF is unique because it is capable of including multiple-worldviews and adopts mauri (intrinsic value or well-being) in the place of the more common monetised assessments of pseudo sustainability using Cost Benefit Analysis. The Mauri Model DMF uses a two stage process that first identifies participants’ worldviews and inherent bias regarding water resource management, and then facilitates transparent assessment of selected sustainability performance indicators. The assessment can then be contemplated as the separate environmental, economic, social and cultural dimensions of the decision, and collectively as an overall result; or the priorities associated with different worldviews can be applied to determine the sensitivity of the result to different cultural contexts or worldviews.