1 resultado para Coxian phase-type distributions fitting parameter estimation optimization health care data
em CUNY Academic Works
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Aston University Research Archive (31)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (58)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (88)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (58)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (20)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (35)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (7)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (43)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (35)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (8)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (96)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (50)
- University of Washington (3)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.