3 resultados para CHRONOPOTENTIOMETRY WITH LINEAR CURRENT SCANNING
em CUNY Academic Works
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Resumo:
Sign language animations can lead to better accessibility of information and services for people who are deaf and have low literacy skills in spoken/written languages. Due to the distinct word-order, syntax, and lexicon of the sign language from the spoken/written language, many deaf people find it difficult to comprehend the text on a computer screen or captions on a television. Animated characters performing sign language in a comprehensible way could make this information accessible. Facial expressions and other non-manual components play an important role in the naturalness and understandability of these animations. Their coordination to the manual signs is crucial for the interpretation of the signed message. Software to advance the support of facial expressions in generation of sign language animation could make this technology more acceptable for deaf people. In this survey, we discuss the challenges in facial expression synthesis and we compare and critique the state of the art projects on generating facial expressions in sign language animations. Beginning with an overview of facial expressions linguistics, sign language animation technologies, and some background on animating facial expressions, a discussion of the search strategy and criteria used to select the five projects that are the primary focus of this survey follows. This survey continues on to introduce the work from the five projects under consideration. Their contributions are compared in terms of support for specific sign language, categories of facial expressions investigated, focus range in the animation generation, use of annotated corpora, input data or hypothesis for their approach, and other factors. Strengths and drawbacks of individual projects are identified in the perspectives above. This survey concludes with our current research focus in this area and future prospects.