2 resultados para Basin management
em CUNY Academic Works
Resumo:
In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.
Resumo:
Driven by Web 2.0 technology and the almost ubiquitous presence of mobile devices, Volunteered Geographic Information (VGI) is knowing an unprecedented growth. These notable technological advancements have opened fruitful perspectives also in the field of water management and protection, raising the demand for a reconsideration of policies which also takes into account the emerging trend of VGI. This research investigates the opportunity of leveraging such technology to involve citizens equipped with common mobile devices (e.g. tablets and smartphones) in a campaign of report of water-related phenomena. The work is carried out in collaboration with ADBPO - Autorità di bacino del fiume Po (Po river basin Authority), i.e. the entity responsible for the environmental planning and protection of the basin of river Po. This is the longest Italian river, spreading over eight among the twenty Italian Regions and characterized by complex environmental issues. To enrich ADBPO official database with user-generated contents, a FOSS (Free and Open Source Software) architecture was designed which allows not only user field-data collection, but also data Web publication through standard protocols. Open Data Kit suite allows users to collect georeferenced multimedia information using mobile devices equipped with location sensors (e.g. the GPS). Users can report a number of environmental emergencies, problems or simple points of interest related to the Po river basin, taking pictures of them and providing other contextual information. Field-registered data is sent to a server and stored into a PostgreSQL database with PostGIS spatial extension. GeoServer provides then data dissemination on the Web, while specific OpenLayers-based viewers were built to optimize data access on both desktop computers and mobile devices. Besides proving the suitability of FOSS in the frame of VGI, the system represents a successful prototype for the exploitation of user local, real-time information aimed at managing and protecting water resources.