2 resultados para Advanced Model Approach (AMA)

em CUNY Academic Works


Relevância:

40.00% 40.00%

Publicador:

Resumo:

HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.