900 resultados para cuny
Resumo:
A newsletter published periodically to keep the faculty, students, staff, and community informed about the activities taking place on the campus of LaGuardia Community College. Cover article: CUNY CHANCELLOR KIBBEE, WOMEN'S CITY CLUB SCHEDULE VISITS HERE.
Resumo:
While much of the literature cites community gardens as providing urban ecosystem services, there is very little research quantifying these benefits. This thesis compares the stormwater runoff rates of urban vacant lots, community gardens, and residential developments in New York City and evaluates community gardens as green infrastructure.
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.
Resumo:
We live in a world full of social media and portable technology that allows for the effortless access to, and sharing of, information. While this constant connection can be viewed as a benefit by some, there have been recent, sometimes embarrassing, instances throughout the world that show just how quickly any expectation of privacy can be destroyed. From pictures of poorly dressed shoppers at a grocery store to customers recording interactions with their servers at restaurants, the internet is full of media (all with the potential to go viral) created and posted without consent of all parties captured. This risk to privacy is not just limited to retail and restaurants, as being in any situation amongst people puts you at risk, including being in an academic classroom. Anyone providing in-class instruction, be they professor or librarian, can be at risk for this type of violation of privacy. In addition, the students in the class are also at risk for being unwittingly captured by their classmates. To combat this, colleges and universities are providing recommendations to faculty regarding this issue, such as including suggested syllabus statements about classroom recording by students. In some instances, colleges and universities have instituted formal policies with strict penalties for violators. An overview of current privacy law as it relates to an academic setting is discussed as well as recent, newsworthy instances of student recording in the classroom and the resulting controversies. Additionally, there is a discussion highlighting various recommendations and formal policies that have been issued and adopted by colleges and universities around the country. Finally, advice is offered about what librarians can do to educate students, faculty, and staff about the privacy rights of others and the potential harm that could come from posting to social media and the open web images and video of others without their consent.
Resumo:
Alison Macrina is the founder and director of the Library Freedom Project, an initiative that aims to make real the promise of intellectual freedom in libraries. The Library Freedom Project trains librarians on the state of global surveillance, privacy rights, and privacy-protecting technology, so that librarians may in turn teach their communities about safeguarding privacy. In 2015, Alison was named one of Library Journal‘s Movers and Shakers. Read more about the Library Freedom Project at libraryfreedomproject.org.
Resumo:
Each year search engines like Google, Bing and Yahoo, complete trillions of search queries online. Students are especially dependent on these search tools because of their popularity, convenience and accessibility. However, what students are unaware of, by choice or naiveté is the amount of personal information that is collected during each search session, how that data is used and who is interested in their online behavior profile. Privacy policies are frequently updated in favor of the search companies but are lengthy and often are perused briefly or ignored entirely with little thought about how personal web habits are being exploited for analytics and marketing. As an Information Literacy instructor, and a member of the Electronic Frontier Foundation, I believe in the importance of educating college students and web users in general that they have a right to privacy online. Class discussions on the topic of web privacy have yielded an interesting perspective on internet search usage. Students are unaware of how their online behavior is recorded and have consistently expressed their hesitancy to use tools that disguise or delete their IP address because of the stigma that it may imply they have something to hide or are engaging in illegal activity. Additionally, students fear they will have to surrender the convenience of uber connectivity in their applications to maintain their privacy. The purpose of this lightning presentation is to provide educators with a lesson plan highlighting and simplifying the privacy terms for the three major search engines, Google, Bing and Yahoo. This presentation focuses on what data these search engines collect about users, how that data is used and alternative search solutions, like DuckDuckGo, for increased privacy. Students will directly benefit from this lesson because informed internet users can protect their data, feel safer online and become more effective web searchers.
Resumo:
In the past few years, libraries have started to design public programs that educate patrons about different tools and techniques to protect personal privacy. But do end user solutions provide adequate safeguards against surveillance by corporate and government actors? What does a comprehensive plan for privacy entail in order that libraries live up to their privacy values? In this paper, the authors discuss the complexity of surveillance architecture that the library institution might confront when seeking to defend the privacy rights of patrons. This architecture consists of three main parts: physical or material aspects, logical characteristics, and social factors of information and communication flows in the library setting. For each category, the authors will present short case studies that are culled from practitioner experience, research, and public discourse. The case studies probe the challenges faced by the library—not only when making hardware and software choices, but also choices related to staffing and program design. The paper shows that privacy choices intersect not only with free speech and chilling effects, but also with questions that concern intellectual property, organizational development, civic engagement, technological innovation, public infrastructure, and more. The paper ends with discussion of what libraries will require in order to sustain and improve efforts to serve as stewards of privacy in the 21st century.
Resumo:
In recent decades, library associations have advocated for the adoption of privacy and confidentiality policies as practical support to the Library Code of Ethics with a threefold purpose to (1) define and uphold privacy practices within the library, (2) convey privacy practices to patrons and, (3) protect against potential liability and public relations problems. The adoption of such policies has been instrumental in providing libraries with effective responses to surveillance initiatives such as warrantless requests and the USA PATRIOT ACT. Nevertheless, as reflected in recent news stories, the rapid emergence of data brokerage relationships and technologies and the increasing need for libraries to utilize third party vendor services have increased opportunities for data surveillers to access patrons’ personal information and reading habits, which are funneled and made available through multiple online library service platforms. Additionally, the advice that libraries should “contract for the same level of privacy reflected in their privacy policies” is no longer realistic given that the existence of multiple vendor contracts negotiated at arms length is likely to produce varying privacy terms and even varying definitions of what constitutes personal information (PII). These conditions sharply threaten the effectiveness and relevance of library privacy policies and privacy initiatives in that such policies increasingly offer false comfort by failing to reflect privacy weaknesses in the data sharing landscape and vendor contracts when library-vendor contracts fail to keep up with vendor data sharing capabilities. While some argue that library privacy ethics are antiquated and rendered obscure in the current online sharing economy PEW studies point to pronounced public discomfort with increasing privacy erosion. At the same time, new directions in FTC enforcement raise the possibility that public institutions’ privacy policies may serve as swords to unfair or deceptive commercial trade practices – offering the potential of renewed relevance for library privacy and confidentiality policies. This dual coin of public concern and the potential for enhanced FTC enforcement suggests that when crafting privacy polices libraries must now walk the knife’s edge by offering patrons both realistic notice about the limitations of protections the library can ensure while at the same time publicly holding vendors accountable to library privacy ethics and expectations. Potential solutions for how to walk this edge are developed and offered as a subject for further discussion to assist the modification of model policies for both public and academic libraries alike.
Resumo:
ABSTRACT World Heritage sites provide a glimpse into the stories and civilizations of the past. There are currently 1007 unique World Heritage properties with 779 being classified as cultural sites, 197 as natural sites, and 31 falling into the categories of both cultural and natural sites (UNESCO & World Heritage Centre, 1992-2015). However, of these 1007 World Heritage sites, at least 46 are categorized as in danger and this number continues to grow. These unique and irreplaceable sites are exceptional because of their universality. Consequently, since World Heritage sites belong to all the people of the world and provide inspiration and admiration to all who visit them, it is our responsibility to help preserve these sites. The key form of preservation involves the individual monitoring of each site over time. While traditional methods are still extremely valuable, more recent advances in the field of geographic and spatial technologies including geographic information systems (GIS), laser scanning, and remote sensing, are becoming more beneficial for the monitoring and overall safeguarding of World Heritage sites. Through the employment and analysis of more accurately detailed spatial data, World Heritage sites can be better managed. There is a strong urgency to protect these sites. The purpose of this thesis is to describe the importance of taking care of World Heritage sites and to depict a way in which spatial technologies can be used to monitor and in effect preserve World Heritage sites through the utilization of remote sensing imagery. The research conducted in this thesis centers on the Everglades National Park, a World Heritage site that is continually affected by changes in vegetation. Data used include Landsat satellite imagery that dates from 2001-2003, the Everglades' boundaries shapefile, and Google Earth imagery. In order to conduct the in-depth analysis of vegetation change within the selected World Heritage site, three main techniques were performed to study changes found within the imagery. These techniques consist of conducting supervised classification for each image, incorporating a vegetation index known as Normalized Vegetation Index (NDVI), and utilizing the change detection tool available in the Environment for Visualizing Images (ENVI) software. With the research and analysis conducted throughout this thesis, it has been shown that within the three year time span (2001-2003), there has been an overall increase in both areas of barren soil (5.760%) and areas of vegetation (1.263%) with a decrease in the percentage of areas classified as sparsely vegetated (-6.987%). These results were gathered through the use of the maximum likelihood classification process available in the ENVI software. The results produced by the change detection tool which further analyzed vegetation change correlate with the results produced by the classification method. As well, by utilizing the NDVI method, one is able to locate changes by selecting a specific area and comparing the vegetation index generated for each date. It has been found that through the utilization of remote sensing technology, it is possible to monitor and observe changes featured within a World Heritage site. Remote sensing is an extraordinary tool that can and should be used by all site managers and organizations whose goal it is to preserve and protect World Heritage sites. Remote sensing can be used to not only observe changes over time, but it can also be used to pinpoint threats within a World Heritage site. World Heritage sites are irreplaceable sources of beauty, culture, and inspiration. It is our responsibility, as citizens of this world, to guard these treasures.
Resumo:
For many years, drainage design was mainly about providing sufficient network capacity. This traditional approach had been successful with the aid of computer software and technical guidance. However, the drainage design criteria had been evolving due to rapid population growth, urbanisation, climate change and increasing sustainability awareness. Sustainable drainage systems that bring benefits in addition to water management have been recommended as better alternatives to conventional pipes and storages. Although the concepts and good practice guidance had already been communicated to decision makers and public for years, network capacity still remains a key design focus in many circumstances while the additional benefits are generally considered secondary only. Yet, the picture is changing. The industry begins to realise that delivering multiple benefits should be given the top priority while the drainage service can be considered a secondary benefit instead. The shift in focus means the industry has to adapt to new design challenges. New guidance and computer software are needed to assist decision makers. For this purpose, we developed a new decision support system. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. Users can systematically quantify the performance, life-cycle costs and benefits of different drainage systems using the evaluation framework. The optimisation tool can assist users to determine combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will focus on the optimisation component of the decision support framework. The optimisation problem formation, parameters and general configuration will be discussed. We will also look at the sensitivity of individual variables and the benchmark results obtained using common multi-objective optimisation algorithms. The work described here is the output of an EngD project funded by EPSRC and XP Solutions.
Resumo:
The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
As a result of urbanization, stormwater runoff flow rates and volumes are significantly increased due to increasing impervious land cover and the decreased availability of depression storage. Storage tanks are the basic devices to efficiently control the flow rate in drainage systems during wet weather. Presented in the paper conception of vacuum-driven detention tanks allows to increase the storage capacity by usage of space above the free surface water elevation at the inlet channel. Partial vacuum storage makes possible to gain cost savings by reduction of both the horizontal area of the detention tank and necessary depth of foundations. Simulation model of vacuum-driven storage tank has been developed to estimate potential profits of its application in urban drainage system. Although SWMM5 has no direct options for vacuum tanks an existing functions (i.e. control rules) have been used to reflect its operation phases. Rainfall data used in simulations were recorded at raingage in Czestochowa during years 2010÷2012 with time interval of 10minutes. Simulation results gives overview to practical operation and maintenance cost (energy demand) of vacuum driven storage tanks depending of the ratio: vacuum-driven volume to total storage capacity. The following conclusion can be drawn from this investigations: vacuum-driven storage tanks are characterized by uncomplicated construction and control systems, thus can be applied in newly developed as well as in the existing urban drainage systems. the application of vacuum in underground detention facilities makes possible to increase of the storage capacity of existing reservoirs by usage the space above the maximum depth. Possible increase of storage capacity can achieve even a few dozen percent at relatively low investment costs. vacuum driven storage tanks can be included in existing simulation software (i.e. SWMM) using options intended for pumping stations (including control and action rules ).
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.