2 resultados para zeolite ZSM-5
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si94Al2O192 cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g. the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in agreement with Dempsey’s rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances.
Resumo:
With a solution technique, NaY zeolite incorporated, tetraethylorthosilicate-crosslinked poly(vinyl alcohol) membranes were prepared. The resulting membranes were tested for their ability to separate isopropyl alcohol/water mixtures by pervaporation in the temperature range of 30-50 degrees C. The effects of the zeolite content and feed composition on the pervaporation performance of the membranes were investigated. The experimental results demonstrated that both flux and selectivity increased simultaneously with increasing zeolite content in the membranes. This was explained on the basis of the enhancement of hydrophilicity, selective adsorption, and establishment of a molecular sieving action attributed to the creation of pores in the membrane matrix. The membrane containing 15 mass % zeolite exhibited the highest separation selectivity of 3991 with a flux of 5.39 X 10(-2) kg/m(2) h with 10 mass % water in the feed at 30 degrees C. The total flux and flux of water were close to each other for almost all the studied membranes, and this suggested that the membranes could be used effectively to break the azeotropic point of water/isopropyl alcohol mixtures to remove a small amount of water from isopropyl alcohol. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water were significantly lower than those for isopropyl alcohol, and this suggested that the developed membranes had a higher separation efficiency for water/isopropyl alcohol systems. The activation energy values for total permeation and water permeation were found to be almost the same for all the membranes, and this signified that coupled transport was minimal because of the highly selective nature of the membranes. Positive heat of sorption values were observed in all the membranes, and this suggested that Henry's mode of sorption was predominant. (c) 2008 Wiley Periodicals, lnc.