36 resultados para wurtzite GaN
em CentAUR: Central Archive University of Reading - UK
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
C14H10CuN4OS, monoclinic, P12(1)/nl (no. 14), a = 8.837(1) angstrom, b = 15.625(2) angstrom, c = 10.366(1) angstrom, beta = 103.36(1)degrees, V = 1392.6 angstrom(3), Z = 4, R-gt(F) = 0.029, WRref(F-2) = 0.076, T = 150 K.
Resumo:
The title solvate, C7H8N4O2 center dot C2H6OS, was obtained unintentionally from a cocrystal screen involving theophylline and isophthalic acid. One molecule each of theophylline and dimethyl sulfoxide is present in the asymmetric unit. The packing consists of molecular sheets lying parallel to the ( 040) series of lattice planes, in which each theophylline molecule is hydrogen bonded to one dimethyl sulfoxide molecule through an N-H center dot center dot center dot O [2.7658 (15) angstrom] hydrogen bond. This particular hydrogen-bond donor was found to be used in this type of interaction in a variety of other crystal structures of theophylline.
Resumo:
N-Propynoyl (5R)-5-phenylmorpholin-2-one undergoes nonregioselective cycloaddition with aromatic azides to furnish mixtures of the corresponding triazoles, whereas N-propenoyl (5R)-5-phenylmorpholin-2-one reacts to furnish the corresponding diastereoisomerically pure aziridines in moderate to good yields, presumably via the intermediate triazolines.
Resumo:
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N2CCI2)](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.
Resumo:
The linking of orthopalladated ferrocenylene units by parabanato(2-) ligands results in enantiospecific assembly of a hexanuclear complex in which (i) the steric bulk of the ferrocenylene moiety, (ii) the folded configuration dictated by the imidato(2-) bridging ligand, and (iii) the strong preference for a trans arrangement of the carbonyl oxygen and ferrocenyl carbon atoms, combine to ensure that only ferrocenylene-palladium units with the same chirality can be located at adjacent positions in the assembled complex. The resulting tris-parabanato(2-)-bridged, hexapalladium complex is thus homochiral (R,R,R,R,R,R or S,S,S,S,S,S), as demonstrated by H-1 NMR spectroscopy and by X-ray analysis of a racemic crystal which shows the complex to possess a tapering, twisted, trigonal-prismatic skeleton of palladium atoms with threefold crystallographic symmetry. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
Pyrene-based molecular tweezers show sequence-specific binding to aromatic polyimides through sterically-controlled donor-acceptor pi-stacking and hydrogen bonding; H-1 NMR spectra of tweezer-complexes with polyimides having different sequence-restrictions show conclusively that the detection of long range sequence-information results from multiple tweezer-binding at adjacent imide residues.
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine-adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554-1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis-syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Resumo:
The preparation of enantiomerically pure threo-beta-amino-alpha-hydroxy acids via 1,3-dipolar cycloadditions of imine dipolarophiles with the chiral isomunchnone derived from (5R)-5-phenylmorpholin-3-one 1 is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subsequent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-beta-amino-alpha-hydroxy acids with recovery of the initial chiral auxiliary. (C) 2009 Published by Elsevier Ltd.
Resumo:
Acridine derivatives can inhibit a variety of nuclear enzymes by binding or intercalating to DNA. This class of compounds is of great interest in the development of novel anticancer agents. Despite the availability of crystallographic data for some of the compounds complexed with DNA, uncertainties remain about the mechanisms of action, binding preferences and biological targets. To investigate the intercalation of several acridine derivatives, a variety of techniques are being employed. Single-crystal X-ray diffraction is being used to determine the high resolution three-dimensional structure of short sequences of quadruplex telomeric DNA with bound drug. This will be compared to the effect of drug binding to long segments of double-stranded DNA using fibre diffraction, with neutron diffraction studies planned to analyse the hydrogen bonding patterns of the DNA-drug complexes. Small-angle neutron scattering (SANS) will also be applied to study drug binding to both short and long sequences of quadruplex and double-stranded DNA in solution. Initial SANS measurements of the telomeric repeat d(TGGGGT) imply that this hexamer is present as a quadruplex. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
C13H9CuN5OS, monoclinic, P12(1)/c1 (no. 14), a = 9.900(2) angstrom, b = 11.018(1) angstrom, c = 12.861(2) angstrom, beta = 103.55(1)degrees, V = 1363.8 angstrom(3), Z = 4, R-gt(F) = 0.029, wR(ref)(F-2) = 0.088, T = 150 K.
Resumo:
Various conflicting data on the rearrangement and absolute stereochemistry of hydroxylignano-9,7'-lactones are resolved using O-18 labeled compounds, also confirmed by an X-ray analysis of a pure lignano-9,7'-lactone enantiomer, obtained for the first time. Under NaH/DMF rearrangement conditions a silyl protected hydroxylignano-9,9'-lactone underwent an unexpected silyl migration.