25 resultados para women’s right over her body
em CentAUR: Central Archive University of Reading - UK
Resumo:
The coding of body part location may depend upon both visual and proprioceptive information, and allows targets to be localized with respect to the body. The present study investigates the interaction between visual and proprioceptive localization systems under conditions of multisensory conflict induced by optokinetic stimulation (OKS). Healthy subjects were asked to estimate the apparent motion speed of a visual target (LED) that could be located either in the extrapersonal space (visual encoding only, V), or at the same distance, but stuck on the subject's right index finger-tip (visual and proprioceptive encoding, V-P). Additionally, the multisensory condition was performed with the index finger kept in position both passively (V-P passive) and actively (V-P active). Results showed that the visual stimulus was always perceived to move, irrespective of its out- or on-the-body location. Moreover, this apparent motion speed varied consistently with the speed of the moving OKS background in all conditions. Surprisingly, no differences were found between V-P active and V-P passive conditions in the speed of apparent motion. The persistence of the visual illusion during the active posture maintenance reveals a novel condition in which vision totally dominates over proprioceptive information, suggesting that the hand-held visual stimulus was perceived as a purely visual, external object despite its contact with the hand.
Resumo:
We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some ernotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.
Resumo:
The atmospheric composition of the central North Atlantic region has been sampled using the FAAM BAe146 instrumented aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). This paper presents an overview of the ITOP campaign. Between late July and early August 2004, twelve flights comprising 72 hours of measurement were made in a region from approximately 20 to 40°W and 33 to 47°N centered on Faial Island, Azores, ranging in altitude from 50 to 9000 m. The vertical profiles of O3 and CO are consistent with previous observations made in this region during 1997 and our knowledge of the seasonal cycles within the region. A cluster analysis technique is used to partition the data set into air mass types with distinct chemical signatures. Six clusters provide a suitable balance between cluster generality and specificity. The clusters are labeled as biomass burning, low level outflow, upper level outflow, moist lower troposphere, marine and upper troposphere. During this summer, boreal forest fire emissions from Alaska and northern Canada were found to provide a major perturbation of tropospheric composition in CO, PAN, organic compounds and aerosol. Anthropogenic influenced air from the continental boundary layer of the USA was clearly observed running above the marine boundary layer right across the mid-Atlantic, retaining high pollution levels in VOCs and sulfate aerosol. Upper level outflow events were found to have far lower sulfate aerosol, resulting from washout on ascent, but much higher PAN associated with the colder temperatures. Lagrangian links with flights of other aircraft over the USA and Europe show that such signatures are maintained many days downwind of emission regions. Some other features of the data set are highlighted, including the strong perturbations to many VOCs and OVOCs in this remote region.
Resumo:
Tomato plants inoculated with Meloidogyne javanica juveniles infected with Pasteuria penetrans were grown in a glasshouse (20-32degreesC) for 36, 53, 71 and 88 days and in a growth room (26-29degreesC) for 36, 53, 71 and 80 days. Over these periods the numbers of P penetrans endospores in infected M. javanica females and the weights of individual infected females increased. In the growth room, most spores (2.03 x 10(6)) were found after 71 days. However, in the glasshouse the rate of increase was slower and spore numbers were still increasing at the final sampling at 88 days (2.04 x 10(6)), as was the weight of the nematodes (72 mug). Weights of uninfected females reached a maximum of 36.2 and 43.1 mug after 71 days in the growth room and glasshouse, respectively.
Resumo:
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.
Resumo:
Male-biased sexual size dimorphism is typical of polygynous mammals, where the degree of dimorphism in body mass is related to male intrasexual competition and the degree of polygyny. However, the importance of body mass in monogamous mammals is largely unknown. We investigated the effect of body mass on life-history parameters and territory size in the red fox (Vulpes vulpes), a socially monogamous canid with slight sexual dimorphism. Increased body size in males appeared to confer an advantage in territory acquisition and defense contests because heavier males held larger territories and exerted a greater boundary pressure on smaller neighbors. Heavier male foxes invested more effort in searching for extrapair matings by moving over a wider area and farther from their territories, leading to greater reproductive success. Males that sired cubs outside their own social group appeared to be heavier than males that only sired cubs within their social group or that were cuckolded, but our results should be treated with caution because sample sizes were small. Territory size, boundary pressure, and paternity success were not related to age of males. In comparison, body mass of females was not related to territory size, probability of breeding, litter size, or cub mass. Only age affected probability of breeding in females: younger females reproduced significantly less than did older females, although we did not measure individual nutritional status. Thus, body mass had a significant effect on life-history traits and territory size in a socially monogamous species comparable to that reported in polygynous males, even in the absence of large size dimorphism.
Resumo:
Physiological parameters measured by an embedded body sensor system were demonstrated to respond to changes of the air temperature in an office environment. The thermal parameters were monitored with the use of a wireless sensor system that made possible to turn any existing room into a field laboratory. Two human subjects were monitored over daily activities and at various steady-state thermal conditions when the air temperature of the room was altered from 22-23°C to 25-28°C. The subjects indicated their thermal feeling on questionnaires. The measured skin temperature was distributed close to the calculated mean skin temperature corresponding to the given activity level. The variation of Galvanic Skin Response (GSR) reflected the evaporative heat loss through the body surfaces and indicated whether sweating occurred on the subjects. Further investigations are needed to fully evaluate the influence of thermal and other factors on the output given by the investigated body sensor system.
Resumo:
Background: Soy isoflavones show structural and functional similarities to estradiol. Available data indicate that estradiol and estradiol-like components may interact with gut "satiety hormones" such as peptide YY (PYY) and ghrelin, and thus influence body weight. In a randomized, double-blind, placebo-controlled, cross-over trial with 34 healthy postmenopausal women (59 ± 6 years, BMI: 24.7 ± 2.8 kg/m2), isoflavone-enriched cereal bars (50 mg isoflavones/day; genistein to daidzein ratio 2:1) or non-isoflavone-enriched control bars were consumed for 8 weeks (wash-out period: 8-weeks). Seventeen of the subjects were classified as equol producers. Plasma concentrations of ghrelin and PYY, as well as energy intake and body weight were measured at baseline and after four and eight weeks of each intervention arm. Results: Body weight increased in both treatment periods (isoflavone: 0.40 ± 0.94 kg, P < 0.001; placebo: 0.66 ± 0.87 kg, P = 0.018), with no significant difference between treatments. No significant differences in energy intake were observed (P = 0.634). PYY significantly increased during isoflavone treatment (51 ± 2 pmol/L vs. 55 ± 2 pmol/L), but not during placebo (52 ± 3 pmol/L vs. 50 ± 2 pmol/L), (P = 0.010 for treatment differences, independent of equol production). Baseline plasma ghrelin was significantly lower in equol producers (110 ± 16 pmol/L) than in equol non-producers (162 ± 17 pmol/L; P = 0.025). Conclusion: Soy isoflavone supplementation for eight weeks did not significantly reduce energy intake or body weight, even though plasma PYY increased during isoflavone treatment. Ghrelin remained unaffected by isoflavone treatment. A larger and more rigorous appetite experiment might detect smaller differences in energy intake after isoflavone consumption. However, the results of the present study do not indicate that increased PYY has a major role in the regulation of body weight, at least in healthy postmenopausal women.
Resumo:
Over the last 25years, "mindblindness" (deficits in representing mental states) has been one of the primary explanations behind the hallmark social-communication difficulties in autism spectrum conditions (ASC). However, highlighting neural systems responsible for mindblindness and their relation to variation in social impairments has remained elusive. In this study we show that one of the neural systems responsible for mindblindness in ASC and its relation to social impairments is the right temporo-parietal junction (RTPJ). Twenty-nine adult males with ASC and 33 age and IQ-matched Controls were scanned with fMRI while making reflective mentalizing or physical judgments about themselves or another person. Regions of interest within mentalizing circuitry were examined for between-group differences in activation during mentalizing about self and other and correlations with social symptom severity. RTPJ was the only mentalizing region that responded atypically in ASC. In Controls, RTPJ was selectively more responsive to mentalizing than physical judgments. This selectivity for mentalizing was not apparent in ASC and generalized across both self and other. Selectivity of RTPJ for mentalizing was also associated with the degree of reciprocal social impairment in ASC. These results lend support to the idea that RTPJ is one important neural system behind mindblindness in ASC. Understanding the contribution of RTPJ in conjunction with other neural systems responsible for other component processes involved in social cognition will be illuminating in fully explaining the hallmark social-communication difficulties of autism.
Resumo:
This article compares two approaches to teaching Asian theatre at undergraduate level in the United Kingdom. One approach samples a variety of different traditions as a means to challenge students to produce performance for a combined audience of hearing and deaf, whereas the other focuses on the effect of exploring one geographical area intensively over the course of one academic year. The article seeks to highlight the merits and pitfalls of both approaches, and questions whether student work that actively questions ethnicity and identity, as well as the tension between innovation and tradition, might be considered diasporic in character.
Resumo:
We studied how the integration of seen and felt tactile stimulation modulates somatosensory processing, and investigated whether visuotactile integration depends on temporal contiguity of stimulation, and its coherence with a pre-existing body representation. During training, participants viewed a rubber hand or a rubber object that was tapped either synchronously with stimulation of their own hand, or in an uncorrelated fashion. In a subsequent test phase, somatosensory event-related potentials (ERPs) were recorded to tactile stimulation of the left or right hand, to assess how tactile processing was affected by previous visuotactile experience during training. An enhanced somatosensory N140 component was elicited after synchronous, compared with uncorrelated, visuotactile training, irrespective of whether participants viewed a rubber hand or rubber object. This early effect of visuotactile integration on somatosensory processing is interpreted as a candidate electrophysiological correlate of the rubber hand illusion that is determined by temporal contiguity, but not by pre-existing body representations. ERPmodulations were observed beyond 200msec post-stimulus, suggesting an attentional bias induced by visuotactile training. These late modulations were absent when the stimulation of a rubber hand and the participant’s own hand was uncorrelated during training, suggesting that pre-existing body representations may affect later stages of tactile processing.
Resumo:
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).
Resumo:
Although tactile representations of the two body sides are initially segregated into opposite hemispheres of the brain, behavioural interactions between body sides exist and can be revealed under conditions of tactile double simultaneous stimulation (DSS) at the hands. Here we examined to what extent vision can affect body side segregation in touch. To this aim, we changed hand-related visual input while participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger = homologous; left middle finger = non-homologous). Across experiments, the two hands were visible or occluded from view (Experiment 1), images of the two hands were either merged using a morphing technique (Experiment 2), or were shown in a compatible vs incompatible position with respect to the actual posture (Experiment 3). Overall, the results showed reliable interference effects of DSS, as compared to target-only stimulation. This interference varied as a function of which non-target finger was stimulated, and emerged both within and between hands. These results imply that the competition between tactile events is not clearly segregated across body sides. Crucially, non-informative vision of the hand affected overall tactile performance only when a visual/proprioceptive conflict was present, while neither congruent nor morphed hand vision affected tactile DSS interference. This suggests that DSS operates at a tactile processing stage in which interactions between body sides can occur regardless of the available visual input from the body.
Resumo:
1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother’s condition and her egg production might be expected. 3. In the temperate butterfly Pararge aegeria , the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects.
Resumo:
A climatology of the late summer stratospheric zonal wind turnaround phenomenon is presented, with a particular focus on the behaviour over the Meteorological Service of Canada’s balloon-launching site at Vanscoy, Saskatchewan (52°N, 107°W). Turnaround refers to the change in sign of the zonal wind velocity and occurs twice each year at stratospheric mid-latitudes, in early spring and in late summer. The late summer turnaround is of particular interest to the high-altitude ballooning community because it offers the ideal conditions for launch, but it is also an interesting dynamical phenomenon in its own right. It is studied here using both the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the United Kingdom Meteorological Office (MetO) analysis products as well as climate simulation data from the Canadian Middle Atmosphere Model (CMAM). The phenomenon and its interannual variability are documented. The predictability of the late summer turnaround over Vanscoy is investigated using both statistical averages and autocorrelation analysis. From the statistical averages, it is found that during every year since 1993, the period from 26 August to 5 September has contained appropriate launch dates. From the autocorrelation analysis, it is found that stratospheric zonal wind anomalies can persist for a month or more during most of the summer, but there is a predictability horizon at the end of the summer — just before turnaround