22 resultados para wireless access point
em CentAUR: Central Archive University of Reading - UK
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.
Resumo:
Due to its popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, we proposed an improved asynchronous distributed and dynamic channel assignment scheme that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of the proposed scheme in practical scenarios found in densely populated WLAN deployments. Specifically, we investigate the convergence behaviour of the scheme and how its performance gains vary with different number of available channels and in different deployment densities. We also prove that our scheme is guaranteed to converge in a single iteration when the number of channels is greater than the number of neighbouring APs.
Resumo:
Wireless local area networks (WLANs) have changed the way many of us communicate, work, play and live. Due to its popularity, dense deployments are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable if an effective channel assignment scheme is not used. In this paper, we propose an enhanced asynchronous distributed and dynamic channel assignment scheme that is simple to implement, does not require any knowledge of the throughput function, allows asynchronous channel switching by each access point (AP) and is superior in performance. Simulation results show that our proposed scheme converges much faster than previously reported synchronous schemes, with a reduction in convergence time and channel switches by tip to 73.8% and 30.0% respectively.
Resumo:
The popularity of wireless local area networks (WLANs) has resulted in their dense deployment in many cities around the world. The increased interference among different WLANs severely degrades the throughput achievable. This problem has been further exacerbated by the limited number of frequency channels available. An improved distributed and dynamic channel assignment scheme that is simple to implement and does not depend on the knowledge of the throughput function is proposed in this work. It also allows each access point (AP) to asynchronously switch to the new best channel. Simulation results show that our proposed scheme converges much faster than similar previously reported work, with a reduction in convergence time and channel switches as much as 77.3% and 52.3% respectively. When it is employed in dynamic environments, the throughput improves by up to 12.7%.
Resumo:
In this paper we present an architecture for network and applications management, which is based on the Active Networks paradigm and shows the advantages of network programmability. The stimulus to develop this architecture arises from an actual need to manage a cluster of active nodes, where it is often required to redeploy network assets and modify nodes connectivity. In our architecture, a remote front-end of the managing entity allows the operator to design new network topologies, to check the status of the nodes and to configure them. Moreover, the proposed framework allows to explore an active network, to monitor the active applications, to query each node and to install programmable traps. In order to take advantage of the Active Networks technology, we introduce active SNMP-like MIBs and agents, which are dynamic and programmable. The programmable management agents make tracing distributed applications a feasible task. We propose a general framework that can inter-operate with any active execution environment. In this framework, both the manager and the monitor front-ends communicate with an active node (the Active Network Access Point) through the XML language. A gateway service performs the translation of the queries from XML to an active packet language and injects the code in the network. We demonstrate the implementation of an active network gateway for PLAN (Packet Language for Active Networks) in a forty active nodes testbed. Finally, we discuss an application of the active management architecture to detect the causes of network failures by tracing network events in time.
Resumo:
Password Authentication Protocol (PAP) is widely used in the Wireless Fidelity Point-to-Point Protocol to authenticate an identity and password for a peer. This paper uses a new knowledge-based framework to verify the PAP protocol and a fixed version. Flaws are found in both the original and the fixed versions. A new enhanced protocol is provided and the security of it is proved The whole process is implemented in a mechanical reasoning platform, Isabelle. It only takes a few seconds to find flaws in the original and the fixed protocol and to verify that the enhanced version of the PAP protocol is secure.
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.
Resumo:
In this paper we propose an enhanced relay-enabled distributed coordination function (rDCF) for wireless ad hoc networks. The idea of rDCF is to use high data rate nodes to work as relays for the low data rate nodes. The relay helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission. rDCF achieves higher throughput over IEEE 802.11 distributed coordination function (DCF). The protocol is further enhanced for higher throughput and reduced energy. These enhancements result from the use of a dynamic preamble (i.e. using short preamble for the relay transmission) and also by reducing unnecessary overhearing (by other nodes not involved in transmission). We have modeled the energy consumption of rDCF, showing that rDCF provides an energy efficiency of 21.7% at 50 nodes over 802.11 DCF. Compared with the existing rDCF, the enhanced rDCF (ErDCF) scheme proposed in this paper yields a throughput improvement of 16.54% (at the packet length of 1000 bytes) and an energy saving of 53% at 50 nodes.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
In this paper we consider a cooperative communication system where some a priori information of wireless channels is available at the transmitter. Several opportunistic relaying strategies are developed to fully utilize the available channel information. Then an explicit expression of the outage probability is developed for each proposed cooperative scheme as well as the diversity-multiplexing tradeoff by using order statistics. Our analytical results show that the more channel information available at the transmitter, the better performance a cooperative system can achieve. When the exact values of the source-relay channels are available, the performance loss at low SNR can be effectively suppressed. When the source node has the access to the source-relay and relay-destination channels, the full diversity can be achieved by costing only one extra channel used for relaying transmission, and an optimal diversity-multiplexing tradeoff can be achieved d(r) = (N + 1)(1 - 2r), where N is the number of all possible relaying nodes.
Resumo:
Wireless Personal Area Networks (WPANs) are offering high data rates suitable for interconnecting high bandwidth personal consumer devices (Wireless HD streaming, Wireless-USB and Bluetooth EDR). ECMA-368 is the Physical (PHY) and Media Access Control (MAC) backbone of many of these wireless devices. WPAN devices tend to operate in an ad-hoc based network and therefore it is important to successfully latch onto the network and become part of one of the available piconets. This paper presents a new algorithm for detecting the Packet/Fame Sync (PFS) signal in ECMA-368 to identify piconets and aid symbol timing. The algorithm is based on correlating the received PFS symbols with the expected locally stored symbols over the 24 or 12 PFS symbols, but selecting the likely TFC based on the highest statistical mode from the 24 or 12 best correlation results. The results are very favorable showing an improvement margin in the order of 11.5dB in reference sensitivity tests between the required performance using this algorithm and the performance of comparable systems.
Resumo:
This paper has two principal aims: first, to unravel some of the arguments mobilized in the controversial privatization debate, and second, to review the scale and nature of private sector provision of water and sanitation in Africa, Asia and Latin America. Despite being vigorously promoted in the policy arena and having been implemented in several countries in the South in the 1990s, privatization has achieved neither the scale nor benefits anticipated. In particular, the paper is pessimistic about the role that privatization can play in achieving the Millennium Development Goals of halving the number of people without access to water and sanitation by 2015. This is not because of some inherent contradiction between private profits and the public good, but because neither publicly nor privately operated utilities are well suited to serving the majority of low-income households with inadequate water and sanitation, and because many of the barriers to service provision in poor settlements can persist whether water and sanitation utilities are publicly or privately operated. This is not to say that well-governed localities should not choose to involve private companies in water and sanitation provision, but it does imply that there is no justification for international agencies and agreements to actively promote greater private sector participation on the grounds that it can significantly reduce deficiencies in water and sanitation services in the South.