24 resultados para western blot

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica ( AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. Results: We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABPI), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. Conclusion: The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What is already known about this subject center dot Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. center dot In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. center dot Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid-TP interaction inhibits signalling downstream TP has not been shown. What this study adds center dot This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. center dot Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA(2) receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TP alpha- and TP beta-transfected HEK 293T cells was explored using binding assays and the TP antagonist H-3-SQ29548. Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium mobilization in a concentration-dependent manner (IC50 10-30 mu M). These flavonoids caused a significant impairment of U46619-induced platelet tyrosine phosphorylation and of ERK 1/2 activation. By contrast, in aspirin-treated platelets all these flavonoids, except quercetin, displayed minor effects on thrombin-induced calcium mobilization, ERK 1/2 and total tyrosine phosphorylation. Finally, apigenin, genistein and luteolin inhibited by > 50% H-3-SQ29548 binding to different cell types. These data further suggest that flavonoids may inhibit platelet function by binding to TP and by subsequent abrogation of downstream signalling. Binding of these compounds to TP occurs in human myometrium and in TP-transfected HEK 293T cells and suggests that antagonism of TP might mediate the effects of flavonoids in different tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleolin is a multi-functional protein that is located to the nucleolus. In tissue Culture cells, the stability of nucleolin is related to the proliferation status of the cell. During development, rat cardiomyocytes proliferate actively with increases in the mass of the heart being due to both hyperplasia and hypertrophy. The timing of this shift in the phenotype of the myocyte from one capable of undergoing hyperplasia to one that can grow only by hypertrophy occurs within 4 days of post-natal development. Thus, cardiomyocytes are an ideal model system in which to study the regulation of nucleolin during growth in vivo. Using Western blot and quantitative RT-PCR (TaqMan) we found that the amount of nucleolin is regulated both at the level of transcription and translation during the development of the cardiomyocyte. However, in cells which had exited the cell cycle and were subsequently given a hypertrophic stimulus, nucleolin was regulated post-transcriptionally. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human D-2short (D-2S) dopamine receptor has been expressed together with the G proteins Gi2 and Go in insect cells using the baculovirus system. Levels of receptor were determined using [H-3]spiperone binding. Levels of G protein heterotrimer were determined using quantitative Western blot and using [S-35]GTPgammaS saturation binding experiments. Levels of the receptor and G protein and the receptor/G protein ratio were similar in the two preparations. Stimulation of [S-35]GTPgammaS binding by a range of agonists occurred with higher relative efficacy and in some cases higher potency in the preparation expressing Go, indicating that interaction of the D-2S receptor is more efficient with this G protein. The effects of various G protein-selective agents on 10,11-dihydroxy-N-n-propylnorapomorphine ([H-3]NPA) binding were used to examine the receptor/G protein complex in the two preparations. Suramin inhibited [H-3]NPA binding with slightly higher potency in the Gi2 preparation, whereas GppNHp inhibited [H-3]NPA binding with greater potency (similar to6-fold) in the Go preparation. This may imply that the G protein is more readily activated in the D-2S/Go preparation. [H-3]Spiperone binding occurred with an increased B-max in the presence of suramin in the Go preparation but not in the Gi2 preparation, suggesting a higher affinity interaction between the free receptor and this G protein. It is concluded that the higher efficiency activation of Go by the D-2S receptor may be a function of higher affinity receptor/G protein interaction as well as a greater ability to activate the G protein. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To identify the role of Notch signaling in the human corneal epithelium. METHODS. Localization of Notch1, Notch2, Delta1, and Jagged1 in the human corneal epithelium was observed with the use of indirect immunofluorescence microscopy. Gene and protein expression of Notch receptors and ligands in human corneal epithelial cells was determined by RT-PCR and Western blot analysis, respectively. The effects of Notch inhibition (by {gamma}-secretase inhibition) and activation (by recombinant Jagged1) on epithelial cell proliferation (Ki67) and differentiation (CK3) were analyzed after Western blotting and immunocytochemistry. RESULTS. Immunofluorescent labeling localized Notch1 and Notch2 to suprabasal epithelial cell layers, whereas Delta1 and Jagged1 were observed throughout the corneal epithelium. Notch1, Notch2, Delta1, and Jagged1 genes and proteins were expressed in human corneal epithelial cells. {gamma}-Secretase inhibition resulted in decreased Notch1 and Notch2 expression, with an accompanying decrease in Ki67 and increased CK3 expression. The activation of Notch by Jagged1 resulted in the upregulation of active forms of Notch1 and 2 proteins (P < 0.05), with a concurrent increase in Ki67 (P < 0.05) and a decrease in CK3 (P < 0.05) expression. Interestingly, {gamma}-secretase inhibition in a three-dimensional, stratified corneal epithelium equivalent had no effect on Ki67 or CK3 expression. In contrast, Jagged1 activation resulted in decreased CK3 expression (P < 0.05), though neither Notch activation nor inhibition affected cell proliferation in the 3D tissue equivalent. CONCLUSIONS. Notch family members and ligands are expressed in the human corneal epithelium and appear to play pivotal roles in corneal epithelial cell differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The positive strand RNA coronavirus, infectious bronchitis virus (IBV), induces a G2/M phase arrest and reduction in the G1 and G1/S phase transition regulator cyclin D1. Quantitative real-time RT-PCR and Western blot analysis demonstrated that cyclin D1 was reduced post-transcriptionally within infected cells independently of the cell-cycle stage at the time of infection. Confocal microscopy revealed that cyclin D1 decreased in IBV-infected cells as infection progressed and inhibition studies indicated that a population of cyclin D1 could be targeted for degradation by a virus mediated pathway. In contrast to the SARS-coronavirus, IBV nucleocapsid protein did not interact with cyclin D1. (c) 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the use of an antiserum, specific for apolipoprotein (apo) B-48, in a competitive, enzyme-linked immunosorbent assay (ELISA) for apo B-48 in triacylglycerol-rich lipoprotein (TRL) fractions prepared from fasting and post-prandial plasma samples. Previously we showed the antiserum to act as an effective immunoblotting agent following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its use in this ELISA indicates that the antiserum recognises the C-terminal region of the protein on the surface of lipoprotein particles. The ELISA had a sensitivity of less than 37 ng/ml and intra- and inter-assay coefficients of variation of 3.8% and 8.6%, respectively. There was no cross-reaction in the ELISA against serum albumin, ovalbumin, thyroglobulin, or apo B-100 (purified by immunoaffinity chromatography), and high lipid concentrations (as Intralipid) did not interfere. A low density lipoprotein fraction reacted in the ELISA but SDS-PAGE-Western blot analysis confirmed the presence, in the fraction, of a small amount of apo B-48, indicating the existence of low density dietary-derived lipoprotein particles. ELISA and SDS-PAGE-Western blot analysis were used to measure apo B-48 in 12 series of postprandial samples collected from 4 diabetic and 8 normal subjects, following test meals of varying fat content. The mean correlation between the two methods was r = 0.74. The mean fasting concentration of apo B-48 in the TRL fractions from 15 healthy men was 0.46 μg/ml of plasma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Apolipoprotein B-48, the transport protein for chylomicrons, is identical with apolipoprotein B-100 for the first 48% of its sequence. No antiserum has yet been reported that can recognize apolipoprotein B-48, but not apolipoprotein B-100. 2. In the present study an antiserum was raised to the C-terminal sequence of apolipoprotein B-48, using specific chemical reactions to ensure that the charged carboxyl group of the C-terminal isoleucine residue was free. In a Western blot the antiserum was shown to bind to a protein band having the characteristics of apolipoprotein B-48, but not to apolipoprotein B-100. 3. In the early evening 11 subjects were given a test meal which contained 40 g of mixed oil and retinyl palmitate. Blood samples were collected over 9 h. Chylomicron-enriched fractions were prepared and analysed for triacylglycerol, retinyl palmitate and apolipoprotein B-48, the latter after separation using SDS/PAGE and visualization by chemiluminescence on a Western blot. Both triacylglycerol and apolipoprotein B-48 showed an early peak at 1 h, which was not seen with retinyl palmitate. All three substances gave a broader peak between 5 and 6 h postprandially. Retinyl palmitate concentrations declined rapidly during the late (6-9 h) postprandial period, but apolipoprotein B-48 concentrations remained elevated. 4. This study has shown that an antiserum has been produced which is specific for apolipoprotein B-48. This has enabled measurement of postprandial concentrations of the protein that revealed features of chylomicron metabolism which have not been reported previously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen sulfide (H(2)S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H(2)S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H(2)S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H(2)S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H(2)O(2), the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H(2) S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H(2)S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H(2)S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H(2)S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H(2)S in cultured HACs and MPCs. H(2)S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.