29 resultados para wax moth
em CentAUR: Central Archive University of Reading - UK
Resumo:
The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.
Resumo:
Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.
Resumo:
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Resumo:
Galleria mellonella (wax moth) larvae have elsewhere been shown to be susceptible to pathogens such as Francisella tularensis, Burkholderia mallei, and Pseudomonas aeruginosa. We report that the larvae are rapidly killed by Campylobacter jejuni at 37 degrees C. Three strains of C. jejuni tested, 11168H (human diarrheal isolate), G1 (human Guillain-Barre syndrome isolate), and 81-176 (human diarrheal isolate), were equally effective at killing G. mellonella larvae. A panel of defined mutants of C. jejuni 11168H, in known or putative virulence genes, showed different degrees of attenuation in G. mellonella larvae. A mutant lacking the O-methyl phosphoramidate (MeOPN) capsule side group was attenuated, clearly demonstrating that MeOPN has a role in virulence. This new model of C. jejuni infection should facilitate the identification of novel virulence genes.
Resumo:
Artificial diet studies were used to differentiate among physical and chemical mechanisms affecting the suitability to diamondback moth (Plutella xylostella L.), of 16 food substrates obtained by growing four different brassicas in the glasshouse or field and measuring the pest's performance on either leaf discs or a diet incorporating leaf powders. Leaves of Chinese cabbage and the cabbage cultivar 'Minicole' were, respectively, the most and least suitable leaves for the insect, but this ranking was reversed on artificial diet. Leaves of glasshouse-grown plants were more suitable than those of plants grown in the fields. Differences in the suitability of leaves to diamondback moth appeared to be largely determined by leaf toughness and surface wax load. Concentrations of individual glucosinolates in the brassicas probably acted as phagostimulants, so increasing their intrinsic susceptibility to diamondback moth, but the effect of the physical factors appeared more important.
Resumo:
The continuous operation of insect-monitoring radars in the UK has permitted, for the first time, the characterization of various phenomena associated with high-altitude migration of large insects over this part of northern Europe. Previous studies have taken a case-study approach, concentrating on a small number of nights of particular interest. Here, combining data from two radars, and from an extensive suction- and light-trapping network, we have undertaken a more systematic, longer-term study of diel flight periodicity and vertical distribution of macro-insects in the atmosphere. Firstly, we identify general features of insect abundance and stratification, occurring during the 24-hour cycle, which emerge from four years’ aggregated radar data for the summer months in southern Britain. These features include mass emigrations at dusk and to a lesser extent at dawn, and daytime concentrations associated with thermal convection. We then focus our attention on the well-defined layers of large nocturnal migrants that form in the early evening, usually at heights of 200–500 m above ground. We present evidence from both radar and trap data that these nocturnal layers are composed mainly of noctuid moths, with species such as Noctua pronuba, Autographa gamma, Agrotis exclamationis, A. segetum, Xestia c-nigrum and Phlogophora meticulosa predominating.
The roles of olfaction and vision in host-plant finding by the diamondback moth, Plutella xylostella
Resumo:
The relative roles of olfaction and vision in the crepuscular host-finding process of a major lepidopteran pest of cruciferous crops, the diamondback moth Plutella xylostella are investigated in a series of laboratory and semi-field experiments. Flying female moths use volatile plant chemical cues to locate and to promote landing on their host, even in complex mixed-crop environments in large cages. Multiple regression analysis shows that both the plant position (front, middle or back rows) and the type of plant (host plant, nonhost plant) are needed to explain the distribution of insects in such a mixed-crop situation. This strong plant position effect indicates that, when host plants are present in a mixture, foraging P. xylostella are more likely to alight on the first row of the plants. The findings are discussed with regard to current theories of host-plant location by phytophagous insects and the possible implications for integrated pest management.
Resumo:
Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.
Resumo:
Impatiens noli-tangere is scarce in the UK and probably only native to the Lake District and Wales. It is the sole food plant for the endangered moth Eustroma reticulattum. Significant annual fluctuations in the size of I. noli-tangere populations endanger the continued presence of E. reticulatum in the UK. In this study, variation in population size was monitored across native populations of L noli-tangere in the English Lake District and Wales. In 1998, there was a crash in the population size of all metapopulations in the Lake District but not of those found in Wales. A molecular survey of the genetic affinities of samples in 1999 from both regions and a reference population from Switzerland was performed using AFLP and ISSR analyses. The consensus UPGMA dendrogram and a PCO scatter plot revealed clear differentiation between the populations of L noli-tangere in Wales and those in the Lake District. Most of the genetic variation in the UK (H-T= 0.064) was partitioned between (G(ST) = 0.455) rather than within (H-S = 0.034) regions, inferring little gene flow occurs between regions. There was similar bias towards differentiation between metapopulations in Wales, again consistent with low levels of interpopulation gene flow. This contrasts with far lower levels of differentiation in the Lake District which suggests modest rates of gene flow may occur between populations. It is concluded that in the event of local extinction of sites or populations, reintroductions should be restricted to samples collected from the same region. We then surveyed climatic variables to identify those most likely to cause local extinctions. Climatic correlates of population size were sought from two Lake District metapopulations situated close to a meteorological station. A combination of three climatic variables common to both sites explained 81-84% of the variation in plant number between 1990 and 2001. Projected trends for these climatic variables were used in a Monte Carlo simulation which suggested an increased risk of I. noli-tangere population crashes by 2050 at Coniston Water. but not at Derwentwater. Implications of these findings for practical conservation strategies are explored. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Larvae of the pine beauty moth Panolis flammae (Denis & Schiffermuller) were reared in sleeve cages on five different seed origins (provenances) of pole stage Pinus contorta in the field in each of four years from 1985 to 1988. Survival varied significantly between the years. In those years when survival was high, significant differences between tree provenance were not found. However, between provenance significant differences were found in larval weight and stage of development. In the years when survival was low, the results seen in good years were reversed. Significant differences attributable to provenance were found but these were not reflected in significant differences between larval weight or development. In addition, there was a significant correlation between the proportion surviving and larval weight, which was not the case in those years where larval survival was high. The results are discussed in light of the pest status of P, flammea in Britain and in view of current silvicultural policies. The use of trees resistant to insect attack as part of an integrated pest management programme is highlighted and the need to coordinate laboratory and field studies so as to control for environmental variation discussed.
Resumo:
Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin - good quality introduced host) and P. contorta (Alaskan seed origin - poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of lai-ge birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory.
Resumo:
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.
Resumo:
1. To maximize the probability of rapid contact with a female’s pheromone plume, the trajectories of male foraging flights might be expected to be directed with respect to wind flow and also to be energetically efficient. 2. Flights directed either upwind, downwind, or crosswind have been proposed as optimal strategies for rapid and/or energetically efficient plume contact. Other possible strategies are random and Lévy walks, which have trajectories and turn frequencies that are not dictated by the direction of wind flow. 3. The planar flight paths of males of the day-active moth Virbia lamae were recorded during the customary time of its sexual activity. 4. We found no directional preference in these foraging flights with respect to the direction of contemporaneous wind flow, but, because crosswind encompasses twice the possible orientations of either upwind or downwind, a random orientation is in effect a de facto crosswind strategy. 5. A crosswind preference should be favoured when the plume extends farther downwind than crosswind, and this strategy is realized by V. lamae males by a random orientation of their trajectories with respect to current wind direction
Resumo:
Interpretation of sedimentary n-alkyl lipid d2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked d2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35& depending on marsh sub-environment, and exhibited site-specific seasonal shifts in d2H up to a maximum of 31 per mil. Maximum interspecies variation in xylem water was 38 per mil, while leaf waters differed seasonally by a maximum of 29 per mil. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100 per mil throughout the 2012 growing season, resulting in an interspecies range in the ewax/leaf water values of -79 per mil to –227 per mil. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane d2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane d2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate interpretation of hydrogen isotope signals from the geological record.