62 resultados para water use efficiency
em CentAUR: Central Archive University of Reading - UK
Resumo:
The idea of Sustainable Intensification comes as a response to the challenge of avoiding resources such as land, water and energy being overexploited while increasing food production for an increasing demand from a growing global population. Sustainable Intensification means that farmers need to simultaneously increase yields and sustainably use limited natural resources, such as water. Within the agricultural sector water has a number of uses including irrigation, spraying, drinking for livestock and washing (vegetables, livestock buildings). In order to achieve Sustainable Intensification measures are needed that enable policy makers and managers to inform them about the relative performance of farms as well as of possible ways to improve such performance. We provide a benchmarking tool to assess water use (relative) efficiency at a farm level, suggest pathways to improve farm level productivity by identifying best practices for reducing excessive use of water for irrigation. Data Envelopment Analysis techniques including analysis of returns to scale were used to evaluate any excess in agricultural water use of 66 Horticulture Farms based on different River Basin Catchments across England. We found that farms in the sample can reduce on average water requirements by 35% to achieve the same output (Gross Margin) when compared to their peers on the frontier. In addition, 47% of the farms operate under increasing returns to scale, indicating that farms will need to develop economies of scale to achieve input cost savings. Regarding the adoption of specific water use efficiency management practices, we found that the use of a decision support tool, recycling water and the installation of trickle/drip/spray lines irrigation system has a positive impact on water use efficiency at a farm level whereas the use of other irrigation systems such as the overhead irrigation system was found to have a negative effect on water use efficiency.
Resumo:
Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.
Resumo:
Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2 short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and 18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1.
Resumo:
Growth and water use of sole crops and intercrops of morphologically contrasting maize and pea cultivars were measured in two years. The maize cultivars were Nancis with erectophile and Sophy with planophile leaves and the pea cultivars Maro a leafy pea and Princess a semi-leafless pea. In the first part of the season water use was lower for sole maize but intercrops and sole pea used similar amounts of water. By 90 days after sowing, when peas had matured, all crops had used similar amounts of water. Maize had slightly greater water use efficiency than peas. Cultivars Nancis and Princess tended to have greater water use efficiency than Sophy and Maro respectively. Intercrops produced more dry matter than sole crops and therefore had consistently greater water use efficiencies.
Resumo:
One of the distinctive characteristics of the water supply system of Greater Amman, the capital of Jordan, is that it has been based on a regime of rationing since 1987, with households receiving water once a week for various durations. This reflects the fact that while Amman's recent growth has been phenomenal, Jordan is one of the ten most water-scarce nations on earth. Amman is highly polarised socio-economically, and by means of household surveys conducted in both high- and low-income divisions of the city, the aim has been to provide detailed empirical evidence concerning the storage and use if water, the strategies used by households to manage water and overall satisfactions with water supply issues, looking specifically at issues of social equity. The analysis demonstrates the social costs of water rationing and consequent household management to be high, as well as emphasising that issues of water quality are of central importance to all consumers.
Resumo:
A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.
Resumo:
Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conductance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.
Resumo:
This Information Paper is the third in a four-part series that looks at the lessons learnt from the BRE Innovation Park concerning compliance with the Code for Sustainable Homes published in November 2006. It focuses on water use, harvesting, recycling and drainage. The other parts deal with: building fabric; energy sources, overheating and ventilation; architecture, construction and sourcing.
Resumo:
Near isogenic lines (NILs) varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cvar Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared at a field site in Berkshire, UK, but within different systems (‘organic’, O, in 2005/06, 2006/07 and 2007/08 growing seasons v. ‘conventional’, C, in 2005/06, 2006/07, 2007/08 and 2008/09). In 2007 and 2008, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added. The contrasting systems allowed NILs to be tested in diverse rotational and agronomic, but commercially relevant, contexts, particularly with regard to the assumed temporal distribution of nitrogen availability, and competition from weeds. For grain, nitrogen-use efficiency (NUE; grain dry matter (DM) yield/available N; where available N=fertilizer N+soil mineral N), recovery of N in the grain (grain N yield/available N), N utilization efficiency to produce grain (NUtEg; grain DM yield/above-ground crop N yield), N harvest index (grain N yield/above-ground crop N yield) and dry matter harvest index (DMHI; grain DM yield/above-ground crop DM yield) all peaked at final crop heights of 800–950 mm. Maximum NUE occurred at greater crop heights in the organic system than in the conventional system, such that even adding just a semi-dwarfing allele (Rht-D1b) to the shortest background, Mercia, reduced NUE in the organic system. The mechanism of dwarfing (gibberellin sensitive or insensitive) made little difference to the relationship between NUE and its components with crop height. For above-ground biomass: dwarfing alleles had a greater effect on DM accumulation compared with N accumulation such that all dwarfing alleles could reduce nitrogen utilization efficiency (NUtE; crop DM yield/crop N yield). This was particularly evident at anthesis in the conventional system when there was no significant penalty for severe dwarfism for N accumulation, despite a 3-tonne (t)/ha reduction in biomass compared to the tallest lines. Differences between genotypes for recovery of N in the grain were thus mostly a function of net N uptake after anthesis rather than of remobilized N. This effect was compounded as dwarfing, except when coupled with Ppd-D1a, was associated with delayed anthesis. In the organic experiments there was greater reliance on N accumulated before anthesis, and genotype effects on NUE were confounded with effects on N accumulated by weeds, which was negatively associated with crop height. Optimum height for maximizing wheat NUE and its components, as manipulated by Rht alleles, thus depend on growing system, and crop utilization (i.e. biomass or grain production).
Resumo:
Coupled photosynthesis–stomatal conductance (A–gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm) and on the biochemical capacity. Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A–gs models to accurately capture the observed functional relationships A vs. gs and A/gsvs. gs in response to drought. Accounting for water stress in coupled A–gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress may be well represented in coupled A–gs models by imposing the highest limitation strength to gm, then to gs and finally to the biochemical capacity.
Resumo:
A UK field experiment compared a complete factorial combination of three backgrounds (cvs Mercia, Maris Huntsman and Maris Widgeon), three alleles at the Rht-B1 locus as Near Isogenic Lines (NILs: rht-B1a (tall), Rht-B1b (semi-dwarf), Rht-B1c (severe dwarf)) and four nitrogen (N) fertilizer application rates (0, 100, 200 and 350 kg N/ha). Linear+exponential functions were fitted to grain yield (GY) and nitrogen-use efficiency (NUE; GY/available N) responses to N rate. Averaged over N rate and background Rht-B1b conferred significantly (P<0.05) greater GY, NUE, N uptake efficiency (NUpE; N in above ground crop / available N) and N utilization efficiency (NUtEg; GY / N in above ground crop) compared with rht-B1a and Rht-B1c. However the economically optimal N rate (Nopt) for N:grain price ratios of 3.5:1 to 10:1 were also greater for Rht-B1b, and because NUE, NUpE and NUtE all declined with N rate, Rht-Blb failed to increase NUE or its components at Nopt. The adoption of semi-dwarf lines in temperate and humid regions, and the greater N rates that such adoption justifies economically, greatly increases land-use efficiency, but not necessarily, NUE.