3 resultados para vitamina C total
em CentAUR: Central Archive University of Reading - UK
Resumo:
BACKGROUND: Monitoring of fruit and vegetable (F&V) intake is fraught with difficulties. Available dietary assessment methods are associated with considerable error, and the use of biomarkers offers an attractive alternative. Few studies to date have examined the use of plasma biomarkers to monitor or predict the F&V intake of volunteers consuming a wide range of intakes from both habitual F&V and manipulated diets. OBJECTIVE: This study tested the hypothesis that an integrated biomarker calculated from a combination of plasma vitamin C, cholesterol-adjusted carotenoid concentration and Ferric Reducing Antioxidant Power (FRAP) had more power to predict F&V intake than each individual biomarker. METHODS: Data from a randomized controlled dietary intervention study [FLAVURS (Flavonoids University of Reading Study); n = 154] in which the test groups observed sequential increases of 2.3, 3.2, and 4.2 portions of F&Vs every 6 wk across an 18-wk period were used in this study. RESULTS: An integrated plasma biomarker was devised that included plasma vitamin C, total cholesterol-adjusted carotenoids, and FRAP values, which better correlated with F&V intake (r = 0.47, P < 0.001) than the individual biomarkers (r = 0.33, P < 0.01; r = 0.37, P < 0.001; and r = 0.14, respectively; P = 0.099). Inclusion of urinary potassium concentration did not significantly improve the correlation. The integrated plasma biomarker predicted F&V intake more accurately than did plasma total cholesterol-adjusted carotenoid concentration, with the difference being significant at visit 2 (P < 0.001) and with a tendency to be significant at visit 1 (P = 0.07). CONCLUSION: Either plasma total cholesterol-adjusted carotenoid concentration or the integrated biomarker could be used to distinguish between high- and moderate-F&V consumers. This trial was registered at www.controlled-trials.com as ISRCTN47748735.
Resumo:
Edaphic variables figure significantly in plant community adaptations in tropical ecosystems but are often difficult to resolve because of the confounding influence of climate. Within the Chiquibul forest of Belize, large areas of Ultisols and Inceptisols occur juxtaposed within a larger zone of similar climate, permitting unambiguous assessment of edaphic contributions to forest composition. Wet chemical analyses, X-ray diffraction and X-ray fluorescence spectroscopy were employed to derive chemical (pH, exchangeable cations, CEC, total and organic C, total trace elements) and physical (texture, mineralogy) properties of four granite-derived Ustults from the Mountain Pine Ridge plateau and four limestone-derived Ustepts from the San Pastor region. The soils of these two regions support two distinct forests, each possessing a species composition reflecting the many contrasting physicochemical properties of the underlying soil. Within the Mountain Pine Ridge forest, species abundance and diversity is constrained by nutrient deficiencies and water-holding limitations imposed by the coarse textured, highly weathered Ultisols. As a consequence, the forest is highly adapted to seasonal drought, frequent fires and the significant input of atmospherically derived nutrients. The nutrient-rich Inceptisols of the San Pastor region, conversely, support an abundant and diverse evergreen forest, dominated by Sabal mauritiiformis, Cryosophila stauracantha and Manilkara spp. Moreover, the deep, fine textured soils in the depressions of the karstic San Pastor landscape collect and retain during the wet season much available water, thereby serving as refugia during particularly long periods of severe drought. To the extent that the soils of the Chiquibul region promote and maintain forest diversity, they also confer redundancy and resilience to these same forests and, to the broader ecosystem, of which they are a central part. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Maculalactones A, B and C from the marine cyanobacterium Kyrtuthrix maculans are amongst the only compounds based on the tribenzylbutyrolactone skeleton known in nature and (+) maculalactone A from the natural source possesses significant biological activity against various marine herbivores and marine settlers. We now report a concise synthesis of racemic maculalactone A in five steps from inexpensive starting materials. Maculalactones B and C were synthesized by a minor modification to this procedure, and the synthetic design also permitted an asymmetric synthesis of maculalactone A to be achieved in around 85% ee. The (+) and (-) enantiomers of maculalactone A were assigned, respectively, to the S and R configurations on the basis of the chiral selectivity expected for catecholborane reduction of an unsymmetrical ketone in the presence of Corey's oxazoborolidine catalyst. Surprisingly, it appeared that natural (+) maculalactone A was biosynthesized in K. maculans in a partially racemic form, comprising ca. 90-95% of the (S) enantiomer and 5-10% of its (R) enantiomer. Coincidentally therefore, the percentage enantiomeric excess of the product obtained from asymmetric synthesis almost exactly matched that found in nature. (C) 2004 Elsevier Ltd. All rights reserved.