36 resultados para visual explanations
em CentAUR: Central Archive University of Reading - UK
Resumo:
Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.
Resumo:
Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.
Resumo:
Seventeen-month-old infants were presented with pairs of images, in silence or with the non-directive auditory stimulus 'look!'. The images had been chosen so that one image depicted an item whose name was known to the infant, and the other image depicted an image whose name was not known to the infant. Infants looked longer at images for which they had names than at images for which they did not have names, despite the absence of any referential input. The experiment controlled for the familiarity of the objects depicted: in each trial, image pairs presented to infants had previously been judged by caregivers to be of roughly equal familiarity. From a theoretical perspective, the results indicate that objects with names are of intrinsic interest to the infant. The possible causal direction for this linkage is discussed and it is concluded that the results are consistent with Whorfian linguistic determinism, although other construals are possible. From a methodological perspective, the results have implications for the use of preferential looking as an index of early word comprehension.
Resumo:
Explanations are an important by-product of medical decisionsupport activities, as they have proved to favour compliance and correct treatment performance. To achieve this purpose, these texts should have a strong argumentation content and should adapt to emotional, as well as to rational attitudes of the Addressee. This paper describes how Rhetorical Sentence Planning can contribute to this aim: the rulebased plan discourse revision is introduced between Text Planning and Linguistic Realization, and exploits knowledge about the user personality and emotions and about the potential impact of domain items on user compliance and memory recall. The proposed approach originates from analytical and empirical evaluation studies of computer generated explanation texts in the domain of drug prescription. This work was partially supported by a British-Italian Collaboration in Research and Higher Education Project, which involved the Universities of Reading and of Bari, in 1996.
Resumo:
This study evaluates computer-generated written explanations about drug prescriptions that are based on an analysis of both patient and doctor informational needs. Three experiments examine the effects of varying the type of information given about the possible side effects of the medication, and the order of information within the explanation. Experiment 1 investigated the effects of these two factors on people's ratings of how good they consider the explanations to be and of their perceived likelihood of taking the medication, as well as on their memory for the information in the explanation. Experiment 2 further examined the effects of varying information about side effects by separating out the contribution of number and severity of side effects. It was found that participants in this study did not “like” explanations that described severe side effects, and also judged that they would be less likely to take the medication if given such explanations. Experiment 3 therefore investigated whether information about severe side effects could be presented in such a way as to increase judgements of how good explanations are thought to be, as well as the perceived likelihood of adherence. The results showed some benefits of providing additional explanatory information.
Resumo:
In this paper we describe how we generated written explanations to ‘indirect users’ of a knowledge-based system in the domain of drug prescription. We call ‘indirect users’ the intended recipients of explanations, to distinguish them from the prescriber (the ‘direct’ user) who interacts with the system. The Explanation Generator was designed after several studies about indirect users' information needs and physicians' explanatory attitudes in this domain. It integrates text planning techniques with ATN-based surface generation. A double modeling component enables adapting the information content, order and style to the indirect user to whom explanation is addressed. Several examples of computer-generated texts are provided, and they are contrasted with the physicians' explanations to discuss advantages and limits of the approach adopted.
Resumo:
In this article, we examine the case of a system that cooperates with a “direct” user to plan an activity that some “indirect” user, not interacting with the system, should perform. The specific application we consider is the prescription of drugs. In this case, the direct user is the prescriber and the indirect user is the person who is responsible for performing the therapy. Relevant characteristics of the two users are represented in two user models. Explanation strategies are represented in planning operators whose preconditions encode the cognitive state of the indirect user; this allows tailoring the message to the indirect user's characteristics. Expansion of optional subgoals and selection among candidate operators is made by applying decision criteria represented as metarules, that negotiate between direct and indirect users' views also taking into account the context where explanation is provided. After the message has been generated, the direct user may ask to add or remove some items, or change the message style. The system defends the indirect user's needs as far as possible by mentioning the rationale behind the generated message. If needed, the plan is repaired and the direct user model is revised accordingly, so that the system learns progressively to generate messages suited to the preferences of people with whom it interacts.
Resumo:
One of the largest uncertainties in quantifying the impact of aviation on climate concerns the formation and spreading of persistent contrails. The inclusion of a cloud scheme that allows for ice supersaturation into the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) can be a useful tool to help reduce these uncertainties. This study evaluates the quality of the ECMWF forecasts with respect to ice super saturation in the upper troposphere by comparing them to visual observations of persistent contrails and radiosonde measurements of ice supersaturation over England. The performance of 1- to 3-day forecasts is compared including also the vertical accuracy of the supersaturation forecasts. It is found that the operational forecasts from the ECMWF are able to predict cold ice supersaturated regions very well. For the best cases Peirce skill scores of 0.7 are obtained, with hit rates at times exceeding 80% and false-alarm rates below 20%. Results are very similar for comparisons with visual observations and radiosonde measurements, the latter providing the better statistical significance.