37 resultados para viscosity and rheological

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the microbiological and physicochemical differences of three types of low fat set yoghurts were studied, as well as the changes taking place during storage at 4 °C for 28 days. The first yoghurt was produced with yoghurt starters and exopolysaccharide (EPS) producing Bifidobacterium longum subsp. infantis CCUG 52486 (CCUGY), the second with yoghurt starters and Bifidobacterium infantis NCIMB 702205 (NCIMBY) and the third with just yoghurt starters (control yoghurt). No significant differences were observed in terms of cell concentrations; for all three yoghurts, similar final cell concentrations were obtained for the yoghurt starter cultures (~7.5 log cfu g−1) and the Bifidobacterium strains (~7.8 log cfu g−1). Both Bifidobacterium survived well during storage, as in both cases the cell viability decreased by less than 0.5 log cfu g−1after 28 days of storage. A decrease in pH followed by an increase in lactic acid was observed during storage for all three yoghurts, which was mostly attributed to the activity of the yoghurt starter cultures. The two yoghurts with the EPS producing Bifidobacterium strains exhibited lower syneresis than the control yoghurt. The lowest was shown by CCUGY, which also exhibited the highest storage modulus and firmness, and a well defined porous web-like structure in cryo-SEM. Examination of the micro-structure of the yoghurts using cryo-scanning electron microscopy (cryo-SEM) indicated that the above observations were due to the interaction between the EPS and the milk proteins. Overall, the results indicated that the EPS producing Bifidobacterium longum subsp. infantis CCUG 52486 is the most promising strain, and can be used with yoghurt starter cultures to manufacture low fat set yoghurt with probiotic activities and at the same time enhanced physicochemical and rheological properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with dysphagia may be prescribed thickened fluids to promote a safer and more successful swallow. Starch-based thickening agents are often employed; however, these exhibit great variation in consistency. The aim of this study was to compare viscosity and the rheological profile parameters complex (G*), viscous (G″), and elastic modulus (G′) over a range of physiological shear rates. UK commercially available dysphagia products at “custard” consistency were examined. Commercially available starch-based dysphagia products were prepared according to manufacturers’ instructions; the viscosity and rheological parameters were tested on a CVOR Rheometer. At a measured shear rate of 50 s−1, all products fell within the viscosity limits defined according to the National Dysphagia Diet Task Force guidelines. However, at lower shear rates, large variations in viscosity were observed. Rheological parameters G*, G′, and G″ also demonstrated considerable differences in both overall strength and rheological behavior between different batches of the same product and different product types. The large range in consistency and changes in the overall structure of the starch-based products over a range of physiological shear rates show that patients could be receiving fluids with very different characteristics from that advised. This could have detrimental effects on their ability to swallow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Addition of 25 mM calcium chloride to soy milk reduced pH, increased ionic calcium and caused it to coagulate. The effects of different chelating agents were investigated on selected physicochemical properties of soy milk and on preventing coagulation. The soy milks were then pasteurised to examine how heat treatment changed some of these properties as well as to evaluate their effects on heat stability. Sediment formation and susceptibility to coagulation could be reduced by decreasing ionic calcium and increasing pH. To achieve this, the most effective chelating agents were tri-sodium citrate and disodium hydrogen phosphate. These chelating agents also reduce absolute viscosity and particle size. Sodium hexa meta phosphate was also effective, but less so; it reduced ionic calcium but had a less noticeable effect on pH. The disodium salt of ethylenediamine tetraacetic acid was not effective, as it decreased the pH of soy milk. Ionic calcium and pH are useful indicators of heat stability of calcium-fortified soy beverages. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low-heat skim milk powder (SMP), reconstituted to 25% total solids, was found to have poor heat stability. This could be improved by reducing the free Ca2+ concentration to 1.14 mm, or lower, by the addition of either Amberlite IR-120 ion-exchange resin in its sodium form or tri-sodium citrate in skim milk prior to evaporation and spray drying. Reduction in Ca2+ concentration was accompanied by increases in pH, particle size, and kinematic viscosity, and by a reduction in zeta-potential and changes in colour. In-container sterilisation of the reconstituted powder increased particle size, zeta-potential, kinematic viscosity and a* and b* values. However. Ca2+ concentration, pH and whiteness decreased. This study elucidated the importance of Ca2+ concentration and pH on heat stability of low-heat SMP, suggesting that Ca2+ concentration and pH in bulk milk are useful indicators for ensuring that spray dried milk powder has good heat stability. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Starch-based thickening agents may be prescribed for patients with dysphagia. Thickened fluids alter variables of the swallow reflex, allowing more time for bolus manipulation without compromising airway closure. This investigation explored the variation in viscosity and physical characteristics of thickened drinks prepared in different media under laboratory conditions and compared the results with those of thickened drinks presented to dysphagic patients in one hospital. The rheological characteristics were tested on a simple plastometer and a Bohlin CVOR rheometer (Malvern Instruments, Worcestershire, UK). Samples prepared to “syrup” consistency both in the laboratory and in the hospitalwere significantly different from each other (P < 0.0001). This was also the case for samples prepared to “custard” consistency. Differences existed not only in viscosity, but drinks prepared in different media produced different rheological matrices. This signifies different viscoelastic behaviors that may effect manipulation in the mouth. From this study, preparation of thickened drinks using starch-based instant thickening powders appears to be a highly variable practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dhaka cheese is a semihard artisanal variety made mainly from bovine milk, using very simple pressing methods. Experimental cheeses were pressed at gauge pressures up to 31 kPa for 12 h at 24 °C and 70% RH. These cheeses were subsequently examined for their compositional, textural and rheological properties plus their microstructures investigated by confocal laser microscopy. The cheese pressed at 15.6 kPa was found to have the best compositional and structural properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of aromatic ureas have been synthesised and found to exhibit strong gelation or even supergelation characteristics in organic solvents to afford colourless or translucent gel materials. The synthesis of these materials, assessment of their gelation characteristics and rheological properties are reported in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.