40 resultados para viral replication
em CentAUR: Central Archive University of Reading - UK
Resumo:
The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.
Resumo:
Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.
Resumo:
Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.
Resumo:
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Resumo:
The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.
Resumo:
A method and oligonucleotide compound for inhibiting replication of a nidovirus in virus-infected animal cells are disclosed. The compound (i) has a nuclease-resistant backbone, (ii) is capable of uptake by the infected cells, (iii) contains between 8-25 nucleotide bases, and (iv) has a sequence capable of disrupting base pairing between the transcriptional regulatory sequences in the 5′ leader region of the positive-strand viral genome and negative-strand 3′ subgenomic region. In practicing the method, infected cells are exposed to the compound in an amount effective to inhibit viral replication.
Resumo:
If we use the analogy of a virus as a living entity, then the replicative organelle is the body where its metabolic and reproductive activities are concentrated. Recent studies have illuminated the intricately complex replicative organelles of coronaviruses, a group that includes the largest known RNA virus genomes. This review takes a virus-centric look at the coronavirus replication transcription complex organelle in the context of the wider world of positive sense RNA viruses, examining how the mechanisms of protein expression and function act to produce the factories that power the viral replication cycle.
Resumo:
Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.
Resumo:
Nucleotides in the terminal loop of the poliovirus 2C cis-acting replication element (2C(CRE)), a 61 nt structured RNA, function as the template for the addition of two uridylate (U) residues to the viral protein VPg. This uridylylation reaction leads to the formation of VPgpUpU, which is used by the viral RNA polymerase as a nucleotide-peptide primer for genome replication. Although VPg primes both positive- and negative-strand replication, the specific requirement for 2C(CRE)-mediated uridylylation for one or both events has not been demonstrated. We have used a cell-free in vitro translation and replication reaction to demonstrate that 2C(CRE) is not required for the initiation of the negative-sense strand, which is synthesized in the absence of 2C(CRE)-mediated VPgpUpU formation. We propose that the 3' poly(A) tail could serve as the template for the formation of a VPg-poly(U) primer that functions in the initiation of negative-sense strands.
Resumo:
RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.
Resumo:
In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel-Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.
Resumo:
At present, national-level policies concerning the eradication and control of bovine viral diarrhoea (BVD) differ widely across Europe. Some Scandinavian countries have enacted strong regulatory frameworks to eradicate the disease, whereas other countries have few formal policies. To examine these differences, the attitudes of stakeholders and policy makers in 17 European countries were investigated. A web-based questionnaire was sent to policy makers, government and private sector veterinarians, and representatives of farmers' organisations. On total, 131 individuals responded to the questionnaire and their responses were analysed by applying a method used in sociolinguistics: frame analysis. The results showed that the different attitudes of countries that applied compulsory or voluntary frameworks were associated with different views about the attribution or blame for BVD and the roles ascribed to farmers and other stakeholders in its eradication and control.
Resumo:
The alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally very widespread, infecting a large variety of terrestrial animals, insects and even fish, and circulate both in the sylvatic and urban/peri-urban environment, causing considerable human morbidity and mortality. Nevertheless, despite their obvious importance as pathogens, there are currently no effective antiviral drugs with which to treat humans or animals infected by any of these viruses. The EU-supported project—VIZIER (Comparative Structural Genomics of Viral Enzymes Involved in Replication, FP6 Project: 2004-511960) was instigated with an ultimate view of contributing to the development of antiviral therapies for RNA viruses, including the alphaviruses [Coutard, B., Gorbalenya, A.E., Snijder, E.J., Leontovich, A.M., Poupon, A., De Lamballerie, X., Charrel, R., Gould, E.A., Gunther, S., Norder, H., Klempa, B., Bourhy, H., Rohayemj, J., L’hermite, E., Nordlund, P., Stuart, D.I., Owens, R.J., Grimes, J.M., Tuckerm, P.A., Bolognesi, M., Mattevi, A., Coll, M., Jones, T.A., Åqvist, J., Unger, T., Hilgenfeld, R., Bricogne, G., Neyts, J., La Colla, P., Puerstinger, G., Gonzalez, J.P., Leroy, E., Cambillau, C., Romette, J.L., Canard, B., 2008. The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res. 78, 37–46]. This review highlights some of the major features of alphaviruses that have been investigated during recent years. After describing their classification, epidemiology and evolutionary history and the expanding geographic distribution of Chikungunya virus, we review progress in understanding the structure and function of alphavirus replicative enzymes achieved under the VIZIER programme and the development of new disease control strategies.
Resumo:
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.